Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 198-204, 2019
Water+DIPA, DIPA+MDEA, Water+DIPA+MDEA 계의 밀도와 과잉부피 측정 및 상관
Measurement and Correlation of density and excess volume for Water+DIPA, DIPA+MDEA and Water+DIPA+MDEA systems
화학공정에서 발생되는 이산화탄소의 제거를 위하여 대표적으로 화학적흡수법이 산업적으로 사용된다. 화학적흡수법에 의한 이산화탄소의 제거를 위한 신공정의 개발을 위하여 다양한 흡수제를 복합적으로 사용하는 신흡수제가 개발되고 있다. 하이브리드 형태의 신흡수제를 이용한 신공정설계에 흡수제 혼합물의 열역학적 데이터는 공정의 설비비용과 운전비용 절감에 필수적이다. 본 연구에서는 Diisopropanolamine (DIPA)와 N-Methyldiethanolamine (MDEA)을 혼합한 Water+DIPA, DIPA+MDEA 이성분계와 Water+DIPA+MDEA 삼성분계 혼합물의 밀도를 측정하였다. Anton Paar DMA 4500 M를 이용하여 303.15 K~333.15 K의 온도에서 혼합물의 전체 조성범위에 대한 밀도를 측정하였다. 측정된 혼합물의 밀도를 이용하여 과잉부피를 계산하였다. 측정된 과잉부피는 Redich-Kister-Muggianu식으로 상관하여 이성분계에 대한 Redlich-Kister-Muggianu 매개변수를 얻었으며, 삼성분계에서는 한 개의 추가적인 매개변수를 이용하여 삼성분계의 과잉부피를 상관하였다. 측정된 모든 계의 전체 조성에서 과잉부피는 음의 값을 가졌으며 이는 모든 계에서 잘 혼합됨을 의미한다.
For the removal of carbon dioxide from the chemical process, a chemical absorption method is typically used industrially. Development of new processes for the removal of carbon dioxide by the chemical absorption method has been developing new absorbents by using various absorbents. Thermodynamic data of the sorbent mixture in the new process design using hybrid absorbent is essential to reduce the equipment cost and operating costs of the process. In this study, densities of water+diisopropanolamine (DIPA), DIPA+MDEA(Methyldiethanolamine) binary systems and Water+DIPA+MDEA ternary system were measured over the full range of composition at temperatures from 303.15 K to 333.15 K by using an Anton Paar digital vibrating tube densimeter (DMA4500). The experimental excess volumes have been obtained from the experimental density results and have been fitted using the Redlich-Kister-Muggianu expression. The parameters obtained from the binary excess volume data were used for the correlation of ternary system with one additional ternary parameter for each isotherm. All investigated binary and ternary systems are completely miscible, because the values of excess volume are negative under the examined conditions.
[References]
  1. UNFCCC, Paris decision, FCCC/CP/2015/L.9/Rev.1(2015).
  2. Min BM, KIC News, 12(1), 2009
  3. Wall TF, Proc. Combust. Inst, 31, 31, 2007
  4. Singh B, Strømman AH, Hertwich EG, Int. J. Greenhouse Gas Control, 5(4), 911, 2011
  5. Kohl AL, Nielsen RB, Gas Purification, 5th ed, Gulf Publishing, Houston, TX(1997).
  6. Isaacs EE, Otto FD, Mather AE, Can. J. Chem. Eng., 55, 210, 1977
  7. Amr H, Jonathan JH, Paitoon T, Amit C, J. Chem. Eng., 48, 1062, 2003
  8. Pouryousefi F, Idem RO, Ind. Eng. Chem. Res., 47(4), 1268, 2008
  9. Wang X, Chem J, Wang X, Phy. And Chem. Liq., 54, 499, 2016
  10. Austgen DM, Rochelle GT, Peng X, Chen CC, Ind. Eng. Chem. Res., 28, 1060, 1989
  11. Chen CC, Song YH, AIChE J., 50(8), 1928, 2004
  12. Chowdhury FI, Akhtar S, Saleh MA, Phy. Chem. Liq., 47, 638, 2009
  13. Spasojevic VD, Serbanovic SP, Djordjevic BD, Kijevcanin ML, J. Chem. Eng., 58, 84, 2013
  14. Maham Y, Mather AE, Hepler LG, J. Chem. Eng., 42, 988, 1997
  15. Muhammad A, Mutalib MIA, Murugesa;n T, Shafeeq A, J. Chem. Eng., 53, 2217, 2008
  16. Na JS, Min BM, Park YC, Moon JH, Chun DH, Lee JS, Shin HY, Korean Chem. Eng. Res., 56(2), 204, 2018
  17. Na J, Min BBM, Park YC, Lee JS, Shin HY, Korean J. Chem. Eng., 34(10), 2725, 2017
  18. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  19. Chowdhury FI, Khan MAR, Saleh MA, Akhtar S, J. Mol. Liq., 182, 7, 2013