Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 172-176, 2019
저생 미생물 연료전지(BMFC)의 구동조건에 따른 성능 변화
Variation of Performance with Operation Condition of Benthic Microbial Fuel Cells
저생 미생물 연료전지(BMFC)는 바다나 호수의 뻘 속에서 저생미생물이 유기물을 분해하면서 발생시키는 전기를 이용한 연료전지다. 본 연구에서는 BMFC 전극으로 카본 소재를 발수 처리한 고분자 전해질 연료전지(PEMFC)의 가스확산층(GDL)을 사용해서 성능이 높게 나오는 구동조건을 찾고자 하였다. 높은 저항 값을 갖는 외부저항을 사용했을 때 성능이 높았으며 바닷물에서 리드선의 부식에 의한 전극과 접촉저항 증가를 피해야 성능을 유지할 수 있었다. 기포 발생기를 사용해 최고출력밀도를 2배 이상 높일 수 있었고 최적 구동 온도는 40 °C 였다.
A benthic microbial fuel cells(BMFC) is fuel cell using electricity produced by decomposing organic matter in a sea or a lake. In this study, we used a gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEMFC) as a BMFC electrode to find out the operation conditions with high performance. The performance of BMFC was increased as resistance of external resistor increased. It was possible to maintain the performance by avoiding the increase of the contact resistance with the electrode due to corrosion of the lead wire in seawater. The bubble generator was able to increase the maximum power density by more than 2 times and the optimum operating temperature was 40 °C.
[References]
  1. Grey D, Garrick D, Blackmore D, Kelman J, Muller M, Sadoff C, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 371, 1, 2013
  2. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B, J. Environ. Manage., 92(10), 2355, 2011
  3. Yeung AT, Sep. Purif. Technol., 79(2), 124, 2011
  4. Pandey B, Fulekar MH, Biol. Med., 4(1), 51, 2012
  5. Nester EW, Anderson DG, Roberts CE, Pearsall NN, Nester MT, “Microbiology: A Human Perspective,” 7th Edn., McGraw-Hill, New York(2011).
  6. Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR, Biosens. Bioelectron., 21(11), 2058, 2006
  7. Reimers CE, Tender LM, Fertig S, Wang W, Environ. Sci. Technol., 35(1), 192, 2001
  8. Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A, Electrochim. Acta, 53(2), 468, 2007
  9. Rezaei F, Richard TL, Brennan RA, Logan BE, Environ. Sci. Technol., 41, 4053, 2007
  10. Cheng S, Liu H, Logan BE, Environ. Sci. Technol., 40(1), 364, 2006
  11. Karra U, Huang GX, Umaz R, Tenaglier C, Wang L, Li BK, Bioresour. Technol., 144, 477, 2013
  12. Cristiani P, Carvalho ML, Guerrini E, Daghio M, Santoro C, Li B, Biogeochemistry, 92, 6, 2013
  13. Fadzillah DM, Rosli MI, Talib MZM, Kamarudin SK, Daud WRW, Renew. Sust. Energ. Rev., 77, 1001, 2017
  14. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013
  15. Karra U, Muto E, Umaz R, Kolln M, Santoro C, Wang L, Li BK, Int. J. Hydrog. Energy, 39(36), 21847, 2014
  16. Li HN, He WH, Qu YP, Li C, Tian Y, Feng YJ, J. Power Sources, 356, 430, 2017
  17. Mahendiravarman E, Sangeetha D, J. Power Sources, 38, 2471, 2013
  18. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011
  19. Martins G, Peixoto L, Ribeiro DC, Parpot P, Brito AG, Nogueira R, Bioelectrochemistry, 78, 67, 2010