Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 164-171, 2019
Study of Protonation Behaviour and Distribution Ratios of Hydroxamic Acids in Hydrochloric and Perchloric Acid Solutions Through Hammett Acidity Function, Bunnett-Olsen and Excess Acidity Method
The protonation parameters, dissociation constants (pKBH+) of conjugate acid, slope values (m, φ and m*) and correlation coefficients (r) of hydroxamic acids were determined by Hammett acidity function method, Bunnett- Olsen method and excess acidity method in hydrochloric and perchloric acid solutions. Effect of acid concentration on partition and percentage protonation was also studied. pKBH+ values show that hydroxamic acids do not behave as Hammett bases, but hydroxamic acids behave as weak bases in strong acidic solutions. The values of pKBH+ obtained through Bunnett-Olsen method and excess acidity method were compared with the Hammett acidity function. ChemAxon's MarvinSketch 6.1.5 software was also used for determining pKa, pI and microspecies distribution (%) of hydroxamic acids with pH. Hydrogen donor and acceptor values and logD were also obtained. The results show that N-p-chlorophenyl-4- bromobenzohydroxamic acid has the highest pKa and lowest logD values. On the contrary, N-phenyl-3,5-dinitrobenzohydroxamic acid has lowest the pKa and highest logD values.
[References]
  1. Garcia VS, Gonzalez VDG, Vega JR, Marcipar IS, Gugliotta LM, Latin Am. Appl. Res., 42, 405, 2012
  2. Kostiainen R, Kotiaho T, Kuuranne TS, J. Mass Spec., 38, 357, 2003
  3. Yadav SS, Pande R, Khare D, Tripathi M, J. Chem. Thermodyn., 54, 76, 2012
  4. Singh P, Pande R, J. Fluoresc., 26, 67, 2016
  5. Singh P, Khare D, Pande R, Chem. Pap., 68(10), 1298, 2014
  6. Vernon F, Eccles H, The Theory and Practice Ion Exchange, London SCI 39.1 (1976).
  7. Sharma P, Obrai S, Kumar R, Chem. Bio. Phy. Sci. Sec. A, 3, 91, 2013
  8. Hassan KF, Kandil SA, Abdel-Aziz HM, Siyam T, Chromatogr. Res. Int., 2011, 1, 2011
  9. Gidwani MS, Kaur H, Pal U, Menon SK, J. Anal. Chem., 64, 104, 2009
  10. Farkas E, Enyedy EA, Zekany L, Deak G, J. Inorg. Biochem., 83, 107, 2001
  11. Jiao C, Zhang Z, Tao J, Zhang D, Chen Y, Lin H, RSC Adv., 7, 27787, 2017
  12. Tondon SG, Bhattacharya SC, J. Chem. Eng. Data, 7, 553, 1962
  13. Gupta VK, Tondon SG, J. Chem. Eng. Data, 17, 257, 1972
  14. Marziano NC, Cimino GM, Passerini RC, J. Chem. Soc.-Perkin Trans. 2, 64, 1253, 1977
  15. Csizmadia A, Tsantili-Kakoulidou I, Pander F, Darvas, J. Pharm. Sci., 86, 865, 1997
  16. Cox RA, Yates K, Can. J. Chem., 61, 2225, 1983
  17. Cox RA, Stewart R, J. Am. Chem. Soc., 98, 488, 1976
  18. Cox RA, Yates K, J. Am. Chem. Soc., 100, 3861, 1978
  19. Cox RA, Yates K, Can. J. Chem., 59, 2116, 1981
  20. Buglass AJ, Hudson K, Tillet J, J. Chem. Soc. Sec. B, 42, 123, 1971
  21. Zhang S, Zhang T, Tang SW, J. Chem. Eng. Data, 61(6), 2088, 2016
  22. Bunnett JF, Olsen FP, Can. J. Chem., 44, 1899, 1966
  23. Arnett EM, Prog. Phys. Org. Chem., 1, 223, 1963
  24. Vernon F, Khorassani IH, Talanta, 25, 410, 1978
  25. Pande R, Tandon SG, Talanta, 38, 1015, 1991
  26. Monzyk BF, United States Patent: 5174917(1992).
  27. Zhang W, Pranolo Y, Urbani M, Cheng CY, Hydrometallurgy, 119-120, 67, 2012
  28. Ghosh KK, Indian J. Chemistry, 40A, 2683, 2003
  29. Garcia B, Ibeas S, Hoyuelos FJ, Leal JM, Secco F, Venturini M, J. Org. Chem., 66, 7986, 2001
  30. Beccia MR, Coordination chemistry. Universita degli studi di Pisa, pp. 7-9(2012).