Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 149-163, 2019
입자 이동 제어를 위한 유전영동: 이론, 전극 구조 및 응용분야
Dielectrophoresis for Control of Particle Transport: Theory, Electrode Designs and Applications
영구 또는 유도 쌍극자를 가지는 물질은 불균일한 전기장 하에서 전기장의 구배 방향을 따라 힘을 받게 되는데, 이 힘에 의한 물질의 이동을 유전영동(dielectrophoresis, DEP)이라 한다. DEP 힘의 크기와 방향은 입자와 매질의 유전율과 전도도, 그리고 가해지는 교류 전기장의 주파수에 의해 영향을 받게 되므로, 이러한 변수를 제어함으로써 입자의 이동을 정확하게 조작할 수 있다. 또한, 전기영동과는 달리 쌍극자가 유도되는 모든 입자에 적용이 가능하다는 장점이 있다. 이러한 DEP 기술은 미세 유체 공학은 물론 바이오 센서, 마이크로 칩 분야 등 다양한 분야에서 활용되고 있다. 본 논문은 먼저 DEP의 기본원리를 설명하고, DEP를 이용한 연구에서 주로 사용되는 대표적인 마이크로 전극의 구조에 대해 논의한다. 그리고, DEP의 대표적 응용분야인 입자의 분리 및 포집, 자기조립(self-assembly) 연구를 소개한다.
Under non-uniform electric field, a directional force along the electric field gradient is applied to matter having permanent or induced dipoles. The transport of particles by the directional force is called dielectrophoresis (DEP). Since the strength and direction of the DEP force depend on parameters, such as permittivity and conductivity of particles and surrounding media, and frequency of the applied AC electric field, particle can be precisely manipulated by controlling the parameters. Moreover, unlike electrophoresis, DEP can be applied to any particles where dipole is effectively induced by electric field. Such a DEP technique has been used in various fields, ranging from microfluidic engineering to biosensor and microchip research. This paper first describes the fundamentals of DEP, and discusses representative microelectrode designs used for DEP study. Then, exemplary applications of DEP, such as separation, capture and self-assembly of particles, are introduced.
[References]
  1. Ali MAM, Kayani ABA, Majlis BY, Microfluidics and Nanofluidics; IntechOpen (2018).
  2. Zborowski M, Chalmers JJ, Magnetophoresis: fundamentals and applications, (1999).
  3. Munaz A, Shiddiky MJA, Nguyen NT, Biomicrofluidics, 12, 031501, 2018
  4. Jung JH, Han KH, Transactions of the Korean Society of Mechanical Engineers B, 32, 856(2008).
  5. Reineck P, Wienken CJ, Braun D, Electrophoresis, 31(2), 279, 2010
  6. Pohl HA, J. Appl. Phys., 22, 869, 1951
  7. Voldman J, Annu. Rev. Biomed. Eng., 8, 425, 2006
  8. Li M, Li WH, Zhang J, Alici G, Wen W, J. Phys. D-Appl. Phys., 47, 063001, 2014
  9. Green HMANG, AC Electrokinetics: Colloids and Nanoparticles, 1st ed., Research Studies Pr Ltd, (2003).
  10. Green NG, Morgan H, Milner JJ, J. Biochem. Biophys. Methods, 35, 89, 1997
  11. Green NG, Morgan H, J. Phys. D-Appl. Phys., 30, 2626, 1997
  12. Lapizco-Encinas BH, Rito-Palomares M, Electrophoresis, 28(24), 4521, 2007
  13. Green NG, Ramos A, Morgan H, J. Phys. D-Appl. Phys., 33, 632, 2000
  14. Markx GH, Huang Y, Zhou XF, Pethig R, Microbiology, 140, 585, 1994
  15. Hughes MP, Morgan H, J. Phys. D-Appl. Phys., 31, 2205, 1998
  16. Bahrieh G, Erdem M, Ozgur E, Gunduz U, Kulah H, RSC Advances, 4, 44879, 2014
  17. Miled MA, El-Achkar CA, Sawan M, Proceedings of the 8th IEEE International NEWCAS Conference, June, Montreal (2010).
  18. Adams T, Yang C, Gress J, Wimmer N, Minerick AR, Advances in Microfluidics; InTech (2012).
  19. Crews N, Darabi J, Voglewede P, Guo F, Bayoumi A, Sens. Actuators B-Chem., 125, 672, 2007
  20. Yang L, Banada PP, Chatni MR, Lim KS, Bhunia AK, Ladisch M, Bashir R, Lab Chip, 6, 896, 2006
  21. Auerswald J, Knapp HF, Microelectronic Engineering, 67, 879, 2003
  22. Li H, Zheng Y, Akin D, Bashir R, J. Microelectromech. Syst., 14, 103, 2005
  23. Sadeghian H, Hojjat Y, Soleimani M, J. Electrostatics, 86, 41, 2017
  24. Javanmard M, Emaminejad S, Dutton RW, Davis RW, Analytical chemistry, 84, 1432, 2012
  25. Yunus NAM, Nili H, Green NG, Electrophoresis, 34(7), 969, 2013
  26. Doh I, Cho YH, Sens. Actuators A-Phys., 121, 59, 2005
  27. Bakewell DJ, Morgan H, IEEE Transactions Nanobioscience, 5, 1, 2006
  28. Alazzam A, Stiharu I, Bhat R, Meguerditchian AN, Electrophoresis, 32(11), 1327, 2011
  29. Choi S, Park JK, Lab Chip, 5, 1161, 2005
  30. Zahn JD, Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics; 1st ed., Artech House, (2009).
  31. Morales FFH, Duarte JE, Marti SJ, Ingenieria e Investigacion, 28, 116(2008).
  32. Green NG, Morgan H, J. Phys. D-Appl. Phys., 30, L41, 1997
  33. Fernadez-Morales FH, Duarte JE, Samitier-Marti J, Anais da Academia Brasileira de Ciencias, 80, 627(2008).
  34. Pethig R, Huang Y, Wang XB, Burt JPH, J. Phys. D-Appl. Phys., 25, 881, 1992
  35. Yasukawa T, Yamada J, Shiku H, Mizutani F, Matsue T, Sens. Actuators B-Chem., 186, 9, 2013
  36. Zhu H, Lin X, Su Y, Dong H, Wu J, Biosens. Bioelectron., 63, 371, 2015
  37. Ramon-Azcon J, Yasukawa T, Mizutani F, Biosens. Bioelectron., 28, 443, 2011
  38. Yafouz B, Kadri NA, Ibrahim F, Sensors, 14, 6356, 2014
  39. Vahey MD, Voldman J, Analytical Chemistry, 80, 3135, 2008
  40. Yan S, Zhang J, Pan C, Yuan D, Alici G, Du H, Zhu Y, Li W, J.Micromechanics Microengineering, 25, 084010, 2015
  41. Zhang J, Yuan D, Zhao Q, Yan S, Tang SY, Tan SH, Guo J, Xia H, Nguyen NT, Li W, Sens. Actuators B-Chem., 267, 14, 2018
  42. Li H, Bashir R, Sens. Actuators B-Chem., 86, 215, 2002
  43. Yildizhan Y, Erdem N, Islam M, Martinez-Duarte R, Elitas M, Sensors, 17, 2691, 2017
  44. Morgan H, Hughes MP, Green NG, Biophys. J., 77, 516, 1999
  45. Song H, Rosano JM, Wang Y, Garson CJ, Prabhakarpandian B, Pant K, Klarmann GJ, Perantoni A, Alvarez LM, Lai E, Lab Chip, 15, 1320, 2015
  46. Piacentini N, Mernier G, Tornay R, Renaud P, Biomicrofluidics, 5, 034122, 2011
  47. Imasato H, Yamakawa T, Eguchi M, Intelligent Automation & Soft Computing, 18, 139(2012).
  48. Eguchi M, Imasato H, Yamakawa T, World Automation Congress, June, Mexico (2012).
  49. Moon HS, Kwon K, Kim SI, Han H, Sohn J, Lee S, Jung HI, Lab Chip, 11, 1118, 2011
  50. Faraghat SA, Hoettges KF, Steinbach MK, van der Veen DR, Brackenbury WJ, et al., Proceedings of the National Academy of Sciences, 201700773 (2017).
  51. Mattsson M, Gromov A, Dittmer S, Eriksson E, Nerushev OA, Campbell EEB, J. Nanosci. Nanotechnol., 7, 3431, 2007
  52. Chen Z, Wu Z, Tong L, Pan H, Liu Z, Analytical chemistry, 78, 8069, 2006
  53. Krupke R, Linden S, Rapp M, Hennrich F, Adv. Mater., 18(11), 1468, 2006
  54. Krupke R, Hennrich F, Lohneysen HV, Kappes MM, Science, 301, 344, 2003
  55. Dimaki M, Bøggild P, Nanotechnology, 15, 1095, 2004
  56. Mendes MJ, Schmidt HK, Pasquali M, J. Phys. Chem. B, 112(25), 7467, 2008
  57. Wu J, Jiao L, Antaris A, Choi CL, Xie L, Wu Y, Diao S, Chen C, Chen Y, Dai H, Small, 9, 4142, 2013
  58. Ye M, Gao J, Xiao Y, Xu T, Zhao Y, Qu L, Carbon, 125, 299, 2017
  59. Kim S, Kim SK, Sun P, Oh N, Braun PV, Nano letters, 17, 6893, 2017
  60. Kolmakov A, Dikin DA, Cote LJ, Huang J, Abyaneh MK, Amati M, Gregoratti L, Gunther S, Kiskinova M, Nature nanotechnology, 6, 651, 2011
  61. chirmer KSU, Esrafilzadeh D, Thompson BC, Quigley AF, Kapsa RMI, Wallace GG, J. Mater. Chem. B, 4, 1142, 2016
  62. Feng L, Chang Y, Zhong J, Jia DC, Scientific reports, 8, 10803, 2018
  63. Lee Y, Park YJ, Kim C, So JH, Yeom B, Koo HJ, Polymer (2019).
  64. Hong SH, Shen TZ, Lee B, Song JK, Particle Particle Systems Characterization, 34, 160034, 2017
  65. Wijnhoven JEGJ, van't Zand DD, van der Beek D, Lekkerkerker HNW, Langmuir, 21(23), 10422, 2005
  66. Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO, Angewandte Chemie, 123, 3099, 2011
  67. Flickinger MC, Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, 7 Volume Set; John Wiley & Sons, ISBN, 2010.
  68. Harwood R, Int. Rev. Cytol., 38, 369, 1974
  69. Yang L, Analytical Letters, 45, 187, 2012
  70. Tomkins MR, Chow J, Lai Y, Docoslis A, Sens. Actuators B-Chem., 176, 248, 2013
  71. Enjoji T, Uchida S, Tochikubo F, Intelligent Automation Soft Computing, 18, 153, 2012
  72. Wang C, Madiyar F, Yu C, Li J, J. Biological Engineering, 11, 9, 2017
  73. Tran TTH, Nguyen NV, Nguyen NC, Bui TT, Duc TC, International Conference on Advanced Techologies for Communications (ATC), December Hanoi (2016).
  74. He X, Hu C, Guo Q, Wang K, Li Y, Shangguan J, Biosens. Bioelectron., 42, 460, 2013
  75. Xing X, Yobas L, IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), Jan, San Francisco (2014).
  76. Patel S, Showers D, Vedantam P, Tzeng TR, Qian S, Xuan X, Biomicrofluidics, 69, 034102, 2012
  77. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y, Anal. Chem., 76, 1571, 2004
  78. Lewpiriyawong N, Kandaswamy K, Yang C, Ivanov V, Stocker R, Anal. Chem., 83, 9579, 2011
  79. Huang SB, Liu SL, Li JT, Wu MH, Int. J. Automation Smart Technology, 4, 83, 2014
  80. Takahashi Y, Takeuchi S, Miyata S, 35th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC), July, Osaka (2013).
  81. Uchida S, Nakao R, Asai C, Jin T, Shiine Y, Nishikawa H, Intelligent Automation & Soft Computing, 18, 165 (2012).
  82. Lerche D, Bilsing R, Biorheology, 25, 245, 1988
  83. Hester JP, Kellogg RM, Mulzet AP, Kruger VR, McCredie KB, Freireich EJ, Blood, 54, 254, 1979
  84. Homsy A, van der Wal PD, Doll W, Schaller R, Korsatko S, Ratzer M, Ellmerer M, Pieber TR, Nicol A, De Rooij NF, Biomicrofluidics, 6, 012804, 2012
  85. Wang S, Sarenac D, Chen MH, Huang SH, Giguel FF, Kuritzkes DR, Demirci U, Int. J. Nanomedicine, 7, 5019, 2012
  86. Kuan DH, Wu CC, Su WY, Huang NT, Scientific Reports, 8, 15345, 2018
  87. Hughes MP, Biomicrofluidics, 10, 032801, 2016
  88. Pommer MS, Zhang YT, Keerthi N, Chen D, Thomson JA, Meinhart CD, Soh HT, Electrophoresis, 29(6), 1213, 2008
  89. Siebman C, Velev OD, Slaveykova VI, Biosensors, 7, 4, 2017
  90. Yin MJ, Huang BB, Zhang AP, Tam HY, Ye XS, IEEE 15th International Conference on Nanotechology (IEEE-NANO), July, Rome (2015).
  91. Mao Q, Fell CJ, Scully AD, Prog. Org. Coat., 76, 51, 2013
  92. Fukushima T, Ohara Y, Murugesan M, Bea JC, Lee KW, Tanaka T, Koyanagi M, IEEE 61th Electronic Components and Technology Conference (ECTC), June, Lake Buena Vista (2011).
  93. Bhatt KH, Velev OD, Langmuir, 20(2), 467, 2004
  94. Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD, Science, 294, 1082, 2001
  95. Pescaglini A, Emanuele U, O'Riordan A, Iacopino D, J. Phys. Conference Series, 307, 012051, 2011
  96. Sarker BK, Shekhar S, Khondaker SI, ACS nano, 5, 6297, 2011
  97. An L, Friedrich C, Progress in Natural Science:Materials International, 23, 367(2013).
  98. Wu PF, Lee GB, Advances in OptoElectronics (2011).
  99. Seichepine F, Salomon S, Collet M, Guillon S, Nicu L, Larrieu G, Flahaut E, Vieu C, Nanotechnology, 23, 095303, 2012
  100. Suehiro J, Zhou G, Hara M, Sens. Actuators B-Chem., 105, 164, 2005
  101. Suehiro J, Zhou G, Imakiire H, Ding W, Hara M, Sens. Actuators B-Chem., 108, 398, 2005
  102. Suehiro J. Sano N, Zhou G, Imakiire H, Imasaka K, Hara M, J. Electrostatics, 64, 408, 2006
  103. Hashim U, Low FW, Liu WW, J. Nanomaterials, 2013, 139, 2013
  104. Wang J, Singh B, Park JH, Rathi S, Lee IY, Maeng S, Joh HI, Lee CH, Kim GH, Sens. Actuators B-Chem., 194, 296, 2014