Issue
Korean Chemical Engineering Research,
Vol.57, No.1, 118-123, 2019
흑연 표면의 PVP와 실리카의 아민 작용기로 결합된 흑연/실리콘/피치 음극 복합소재의 전기화학적 성능
Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group
본 연구에서는 리튬이온전지 음극소재인 흑연의 낮은 이론 용량을 개선하기 위해 흑연/실리콘/피치 음극 복합소재의 전기화학적 특성을 조사하였다. 흑연의 표면에 양친성 물질인 Polyvinylpyrrolidone (PVP)을 코팅한 후 (3-Aminopropyl)triethoxysilane(APTES)로 표면 처리된 실리카를 결합시켜 흑연/실리카를 합성하였으며, 실리카의 질량비에 따라 피치 소재로 코팅한 후 마그네슘 열 환원법을 통하여 실리카를 실리콘으로 환원시켜 흑연/실리콘/피치 복합소재를 제조하였다. 흑연/실리콘/피치 음극소재는 XRD, SEM과 TGA를 통해 물리적 특성을 분석하였으며, 전기화학적 특성은 1.0 M LiPF6 (EC:DMC:EMC=1:1:1 vol%)의 전해액을 사용하여 충·방전 사이클, 율속, 순환전압전류, 임피던스테스트를 통해 조사하였다. 제조된 흑연/실리콘/피치 복합소재의 실리카 비율이 28.5 wt% 일때 537 mAh/g의 높은 초기 방전 용량을 나타내었으며, 30 사이클까지의 사이클 성능은 95%로 매우 우수한 사이클 안정성과 율속 테스트에서0.1 C/0.2 C 일 때 98% 회복을 나타냄을 확인하였다.
In this study, the electrochemical characteristics of Graphite/Silicon/Pitch anode composites were analyzed to improve the low theoretical capacity of graphite as a lithium ion battery. The Graphite/Silica composites were synthesized by bonding silica onto polyvinylpyrrolidone coated graphite. The surface of used silica was treated with (3- Aminopropyl)triethoxysilane(APTES). Graphite/Silicon/Pitch composites were prepared by carbonization of petroleum pitch, the fabrication processes including the magnesiothermic reduction of nano silica to obtain silicon and varying the mass ratio of silica. The Graphite/Silicon/Pitch composites were analysed by XRD, SEM and XRD. Also the electrochemical performances of Graphite/Silicon/Pitch composite as the anode of lithium ion battery were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of LiPF6 dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%). The Graphite/Silicon/Pitch anode composite (silica 28.5 in weight) has better capacity (537 mAh/g). The cycle performance has an excellent capacity retention to 30th cycle of 95% and the retention rate capability of 98% in 0.1 C/0.2 C.
[References]
  1. Oh J, Jin D, Kim K, Song D, Lee YM, Ryou MH, ACS Omega, 2(11), 8438, 2017
  2. Lee JK, Smith KB, Hayner CM, Kung HH, ChemComm, 46, 2025, 2010
  3. Cui LF, Yang Y, Hsu CM, Cui Y, Nano Letters, 9(9), 3370, 2009
  4. Han YJ, Kim J, Yeo JS, An JC, Hong IH, Nakabayashi K, Miyawaki J, Jung JD, Yoon SH, Carbon, 94, 432, 2015
  5. Wu L, Zhou H, Yang J, Zhou X, Ren Y, Nie Y, Chen S, J. Alloy. Compd., 716, 204, 2017
  6. Zhou R, Fan R, Tian Z, Zhou Y, Guo H, Kou L, Zhang D, J. Alloy. Compd., 658, 91, 2016
  7. Kim SY, Lee J, Kim BH, Kim YJ, Yang KS, Park MS, ACS Appl. Mater. Interfaces, 8, 12109, 2016
  8. Lee SH, Lee JD, Korean Chem. Eng. Res., 56(4), 561, 2018
  9. Yang Y, Wang Z, Yan G, Guo H, Wang J, Li X, Zhou Y, Zhou R, Ceram. Int., 43, 8590, 2017
  10. Kim Y, Qian Y, Kim M, Ju J, Baeck SH, Shim SE, RSC Adv, 7, 24242, 2017
  11. Sharma RK, Sharma S, Dalton Trans., 43, 1292, 2014
  12. Lee JH, Kim JH, Choi K, Kim HG, Park JA, Cho S, et al., Scientific Reports, 8, 12078, 2018
  13. Zhang Z, Chen S, Hana Q, Dinga M, J. Chromatogr. A, 1307, 135, 2013
  14. Jeong S, Li XL, Zheng JM, Yan PF, Cao RG, Jung HJ, Wang CM, Liu J, Zhang JG, J. Power Sources, 329, 323, 2016
  15. Choi S, Kim K, Nam J, Shim SE, Carbon, 60, 254, 2013
  16. Jo YJ, Lee JD, Korean Chem. Eng. Res., 56(3), 320, 2018
  17. Entwistle J, Rennie A, Patwardhan S, J. Mater. Chem. A, 6, 18344, 2018
  18. Chen HD, Wang ZL, Hou XH, Fu LJ, Wang SF, Hu XQ, Qin HQ, Wu YP, Ru Q, Liu X, Hu SJ, Electrochim. Acta, 249, 113, 2017
  19. Li M, Hou XH, Sha YJ, Wang J, Hu SJ, Liu X, Shao ZP, J. Power Sources, 248, 721, 2014
  20. Lai J, Guo H, Wang Z, Li X, Zhang X, Wu F, Yue P, J. Alloy. Compd., 530, 30, 2012
  21. Li ZF, Zhang H, Liu Q, Liu Y, Stanciu L, Xie J, ACS Appl. Mater. Interfaces, 6, 5996, 2014
  22. Yang Y, Wang Z, Zhou Y, Guo H, Li X, Mater. Lett., 199, 84, 2017