Issue
Korean Chemical Engineering Research,
Vol.57, No.1, 28-41, 2019
소듐냉각고속로 원형로 소듐-물 반응 압력완화계통 성능 해석 연구
Investigation on Performance Analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor
본 연구는 소듐냉각고속로 원형로 소듐-물 반응 압력완화계통의 성능 해석을 목적으로 한다. 증기발생기의 전열관 파단에 의한 대규모 물 누출 사고 발생 시, 증기발생기 전열관 내측의 물을 급수덤프탱크로 배출하고 전열관 외측의 소듐 및 반응생성물을 소듐덤프탱크로 배출 할 때 유체의 거동을 해석하여 계통 설계요건의 적절성을 평가하였다. 증기발생기 쉘 측의 액체와 중간열전달계통 내 소듐이 모두 배출되는데 소요되는 시간은 약 50초이고, 증기발생기 전열관 측의 급수가 모두 배출되는데 소요되는 시간은 약 2.5초로 계산되었다. 증기발생기와 중간열전달계통 내 유체가 덤프탱크로 배출되는 동안 전열관 측의 압력은 쉘 측의 압력보다 높게 유지되어 쉘 측의 소듐이 전열관 측으로 역류하는 현상은 없는 것으로 해석되었다. 본 연구의 결과는 SFR 원형로 소듐-물반응압력완화계통의 성능 평가에 대한 기초 자료로 활용할 예정이다.
We carried out performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation- IV Sodium-Cooled Fast Reactor. We analyzed transient-dynamic behavior of fluids inside the steam generator to vent into a sodium dump tank or a water dump tank when tubes in the steam generator were broken to cause a largewater- leak accident. Accordingly, we preliminarily evaluated design requirements of our system. Our results showed that sodium in the shell side of the steam generator and in Intermediate Heat Transport System was completely vented within 50 s and feed water in the tube side of the steam generator was completely vented within 2.5 s. It was analyzed that pressure of the tube side of the steam generator was higher than pressure of the shell side of the steam generator, which showed that sodium in the shell side did not flow into the tube side. Our results are expected to be used as basis information to performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium- Cooled Fast Reactor.
[References]
  1. Abram T, Ion S, Energy Policy, 36(12), 4323, 2008
  2. Ahn SJ, Ha KS, Chang WP, Kang SH, Lee KL, et al., Nucl. Eng. Technol., 48(4), 952, 2016
  3. Park SH, Min JH, Lee TH, Wi MH, Korean Chem. Eng. Res., 54(6), 863, 2016
  4. Park SH, Ye HY, Lee TH, Korean Chem. Eng. Res., 55(2), 170, 2017
  5. Park SH, Han JW, Korean Chem. Eng. Res., 56(3), 388, 2018
  6. Shin YW, Wiedermann AH, Eichler TV, Youngdahl CK, Ockert CE, Nucl. Eng. Des., 106, 221, 1998
  7. Ye HT, Choi SR, Han JW, Lee TH, “Pressure Transient Analysis for Sodium-Water Reaction Event Using SPIKE Code,” , October, Gyeongju(2016).
  8. Takata T, Yamaguchi A, Fukuzawa K, Matsubara K, Nucl. Sci. Eng., 150(2), 221, 2005
  9. Takata T, Yamaguchi A, Ohshima H, Watanabe A, J. Nucl. Sci. Technol., 43(5), 514, 2006
  10. Takata T, Yamaguchi A, Uchibori A, Ohshima H, J. Nucl. Sci. Technol., 46(6), 613, 2009
  11. Shin YW, Chung HH, Wiedermann AH, Tanabe H, “SWAAM-LT: The Long-Term, Sodium/Water Reaction Analysis method Computer Code,” August, Stuttgart (1993).
  12. Eoh JH, Jeong JY, Kim SO, Hahn D, Nucl. Technol., 152(3), 286, 2005
  13. Shepherd CB, Lapple CE, Ind. Eng. Chem., 32(9), 1246, 1940
  14. Hori M, Atomic Energy Review, 18(3), 707, 1980
  15. Baldev RP, Chellapandi, Rao PRV, Sodium Fast Reactors with Closed Fuel Cycle, 1st ed., CRC Press, Boca Raton, FL(2015).