Issue
Korean Chemical Engineering Research,
Vol.57, No.1, 17-21, 2019
철-크롬 산화환원흐름전지에서 Sulfonated Poly (Ether Ether Ketone)막의 활물질 Crossover
Active Material Crossover through Sulfonated Poly (Ether Ether Ketone) Membrane in Iron-Chrome Redox Flow Battery
산화환원흐름전지(Redox Flow Battery, RFB)는 대용량 에너지 저장장치로 바나듐 산화환원흐름전지가 대표적인 RFB인데, V-RFB는 고가인 점이 문제다. 철-크롬 RFB는 저가의 활물질(철, 크롬)을 사용해 경제적인 점이 장점인데, 성능이 낮은 점이 해결해야 할 과제다. 낮은 성능의 한 원인이 활물질의 크로스오버인데, 본 연구에서 불소계막 대신 탄화수소계막인 sulfonated Poly (ether ether ketone) (sPEEK)막을 사용해 활물질 투과를 감소시키는 연구를 하였다. sPEEK막의 크롬 이온 투과도는 1.8×10-6 cm2/min으로 Nafion막에 비해 약 1/33으로 작아서 불소계막 대신 sPEEK막을 사용하면 높은 활물질 투과문제를 해결할 수 있음을 보였다. 철 이온의 sPEEK막 확산의 활성화 에너지도 24.9 kJ/mol으로 Nafion막의 약 66%로 작았다. 그리고 고분자막에 들어간 e-PTFE 지지체가 철-크롬 산화환원흐름전지(ICRFB)에서 활물질 투과도를 감소시킴을 보였다.
The redox flow battery (RFB) is a large-capacity energy storage equipment, and the vanadium redox flow cell is a typical RFB, but VRFB is expensive. Iron-chrome RFBs are economical because they use low-cost active materials, but their low performance is an urgent problem. One of the reasons for the low performance is the crossover of the active materials. In this study, the sulfonated Poly (ether ether ketone) (sPEEK) membrane, which is a hydrocarbon membrane, was used instead of the fluorine membrane to reduce the crossover of the active materials. The chromium ion permeability of the sPEEK membrane was 1.8× 10-6 cm2/min, which was about 1/33 of that of the Nafion membrane. Thus, it was shown that the use of the sPEEK membrane instead of the fluorine membrane could solve the high active material crossover problem. The activation energy of iron diffusion through the sPEEK membrane was 24.9 kJ/mol, which was about 66% of Nafion membrane. And that the e-PTFE support in the polymer membrane reduces the active material crossover through Iron-Chrome Redox Flow Battery (ICRFB).
[References]
  1. de Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC, J. Power Sources, 160(1), 716, 2006
  2. Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M, Membranes, 2(2), 275, 2012
  3. Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V, J. Power Sources, 247, 1040, 2014
  4. Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970, 2013
  5. Thaller LH, “Electrically Rechargeable Redox Flow Cells,”NASA Lewis Research Centre, TM X-71540(1974).
  6. Zeng YK, Zhao TS, An L, Zhou XL, Wei L, J. Power Sources, 300, 438, 2015
  7. Cheng DS, Hollax E, J. Electrochem. Soc., 132(2), 269, 1985
  8. Hollax E, Cheng DS, Carbon, 23(6), 655, 1985
  9. Johnson DA, Reid MA, J. Electrochem. Soc., 132(5), 1058, 1985
  10. Wu CD, Scherson DA, Calvo EJ, Yeager EB, Reid M, J. Electrochem. Soc., 133, 2109, 1986
  11. Gahn RF, Hagedorn NH, Ling JS, “Single Cell Performance Studies on the Fe/Cr Redox Energy Storage System Using Mixed Reactant Solutions at Elevated Temperature,” NASA, Lewis Research Centre, TM-83385(1983).
  12. Kim YS, Oh SH, Kim EB, Kim DY, Kim SJ, Chu CH, Park KP, Korean Chem. Eng. Res., 56(1), 24, 2018
  13. Lee HR, Lee SH, Hwang BC, Na IC, Lee JH, Oh SJ, Park KP, Korean Chem. Eng. Res., 54(2), 181, 2016
  14. Oh SJ, Jeong JH, Shin YC, Lee MS, Lee DH, Chu CH, Kim YS, Park KP, Korean Chem. Eng. Res., 51(6), 671, 2013
  15. Paik Y, Chae SA, Han OH, Hwang SY, Ha HY, Polymer, 50(12), 2664, 2009
  16. Giner-Sanz JJ, Ortega EM, Perez-Herranz V, Int. J. Hydrog. Energy, 89, 13206, 2014
  17. Kim T, Lee H, Sim W, Lee J, Kim S, Lim T, Park K, Korean J. Chem. Eng., 26(5), 1265, 2009
  18. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013