Issue
Korean Chemical Engineering Research,
Vol.56, No.2, 281-290, 2018
Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A′xBO3:A′ = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계
Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A′xBO3: A′ = K, Sr; 0 ≤ x ≤ 1;B = Fe, Cr, Mn) on Combustion Activity
최근 선진국을 중심으로 고연비-저배출 내연기관 (디젤) 자동차 보급의 필요성이 대두되면서 기존 촉매후처리 장치의 저온성능 강화를 위한 기술적 방안들이 시급히 요구되고 있다. 본 논문에서는 디젤엔진 배출 탄소입자상 물질의 연소반응에 있어 연료함유 촉매(Fuel-Borne Catalyst)와 페로브스카이트(Perovskite)의 복합촉매 시스템이 보이는 상용모델촉매 대비 우수한 저온 연소성능과 이의 Perovskite 촉매 조성에 대한 의존성에 관해 논하였다. Fe/Ce 계열 연료함유 촉매가 A-site 원소(La)에 K이 부분치환되고, B-site 금속이 Fe인 Perovskite 촉매와 복합화될 때 상대적으로 우수한 저온 연소성능 개선효과가 관찰되었다. 이를 관찰하기 위해 연료함유 촉매가 함유되거나 함유하지 않은 탄소 입자상 물질과 다양한 조성의 La 계열 Perovskite 촉매를 혼합한 고정층에 대한 온도상승 산화반응 실험(Temperature-Programmed Oxidation)을 수행하였으며, 이산화탄소 생성과 질소산화물 농도 저하 패턴의 연동특성을 통해 두 촉매의 상호 연계작용을 유추하였다.
As the internal combustion engine vehicles of high fuel efficiency and low emission are demanded, it becomes important to procure technologies for improving low-temperature performance of automotive catalyst systems. In this study, we showed that the combustion rate of diesel particulate matter is greatly enhanced at low temperature by applying fuel-borne catalyst and perovskite catalyst concurrently. It was tried to examine the correlation between elemental composition of perovskite catalyst and combustion activity of mixed catalyst system. To achieve this goal, we applied temperature-programmed oxidation technique in testing the combustion behavior of perovskite-mixed particulate matter bed which contained the element of fuel-borne catalyst or not. We tried to explain the synergetic action of two catalyst components by comparing the trends of concentrations of carbon dioxide and nitrogen oxide in temperatureprogrammed oxidation results.
[References]
  1. Zammit M, DiMaggio C, Kim C, Lambert C, Muntean G, Peden C, Parks J, Howden K, US Drive Workshop, November, Southfield, Michigan (2012).
  2. Reichert D, Bockhorn H, Kureti S, Appl. Catal. B: Environ., 80(3-4), 248, 2008
  3. Teraoka Y, Kagawa S, Catal. Surv. Jpn., 2, 155, 1998
  4. Lee DW, Sung JY, Park JH, Hong YK, Lee SH, Oh SH, Lee KY, Catal. Today, 157(1-4), 432, 2010
  5. Harris SJ, Maricq MM, J. Aerosol Sci., 32(6), 749, 2001
  6. Kim J, Park Y, Kwon S, Hwang J, Ko J, A report from National Institute of Environmental Research (NIER, Republic of Korea), p.3, (2013).
  7. Lee DW, Song SJ, Lee KY, Korean J. Chem. Eng., 27(2), 452, 2010
  8. Teraoka Y, Nakano K, Shangguan W, Kagawa S, Catal. Today, 27(1-2), 107, 1996
  9. Teraoka Y, Kanada K, Kagawa S, Appl. Catal. B: Environ., 34(1), 73, 2001
  10. Shangguan WF, Teraoka Y, Kagawa S, Appl. Catal. B: Environ., 16(2), 149, 1998
  11. Russo N, Fino D, Saracco G, Specchia V, J. Catal., 229(2), 459, 2005
  12. Fino D, Russo N, Saracco G, Speechia V, J. Catal., 217(2), 367, 2003
  13. Lopez-Suarez FE, Bueno-Lopez A, Illan-Gomez MJ, Ura B, Trawczynski J, Top. Catal., 52, 2097, 2009
  14. Atribak I, Bueno-Lopez A, Garcia-Garcia A, Navarro P, Frias D, Montes M, Appl. Catal. B: Environ., 93(3-4), 267, 2010
  15. Suzuki T, Kyotani T, Tomita A, Ind. Eng. Chem. Res., 33(11), 2840, 1994
  16. Peng X, Lin H, Shangguan W. Huang Z, Catal. Commun., 8(2), 157, 2007
  17. Wang K, Qian L, Zhang L, Liu HR, Yan ZF, Catal. Today, 158(3-4), 423, 2010
  18. Li ZQ, Meng M, Li QA, Xie YN, Hu TD, Zhang J, Chem. Eng. J., 164(1), 98, 2010
  19. Li ZQ, Meng M, Dai FF, Hu TD, Xie YN, Zhang J, Fuel, 93(1), 606, 2012