Issue
Korean Chemical Engineering Research,
Vol.56, No.2, 229-239, 2018
탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화
Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae
본 연구의 목적은 탈지미세조류(LEA) 세포벽 분해를 통한 바이오당 생산에 있어 당화효소 사용없이 마이크로파 전처리만을 이용하여 글루코오스와 자일로오스를 생산하는 것이다. LEA의 주성분인 셀룰로오스와 헤미셀룰로오스의 무효소 당화를 위해 산 가수분해 기반의 마이크로파 전처리 조건을 반응표면분석법을 이용하여 최적화하였다. 마이크로파를 이용한 무효소 당화 공정의 주요 변수는 마이크로파 출력(198~702 W), 전처리 시간(39~241 sec)와 황산 농도 (0~0.1 mol)로 최적 조건 예측을 위해 중심합성계획법을 이용하여 2차 회귀함수를 도출하였다. 마이크로파 출력과 전처리 시간이 LEA로부터 육탄당(C6)과 오탄당(C5) 생산에 유의한 영향을 주는 변수이며 증가에 따라 육탄당과 오탄당 당화율이 증가하는 경향을 확인하였다. 육탄당과 오탄당 당화율 최대화를 위한 산 가수분해를 적용한 마이크로파 전처리 최적 조건은 마이크로파 출력 700W, 전처리 시간 185.7 sec와 황산 0.48 mol으로 육탄당 당화율 92.7%와 오탄당 당화율 74.5%가 예측되었으며 확인 실험을 통해 육탄당 당화율 94.2%와 오탄당 당화율 70.8%가 확인되어 예측의 유효성을 확인할 수 있었다. 이는 LEA의 셀룰로오스와 헤미셀룰로오스 당화를 위해 산 가수분해 적용 마이크로파 전처리만을 이용한 무효소 당화 공정 적용과 100 °C 이하의 낮은 온도와 짧은 전처리 시간 적용을 가능하여 기존 전처리 대비 효과적인 공정 임을 입증했다.
The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below 100 °C with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.
[References]
  1. Lee IS, Korean Ind. Chem. News, 16(2), 38, 2013
  2. Choi KS, Ryu JH, Park DJ, Oh SC, Kwak H, Korean Chem. Eng. Res., 53(2), 205, 2015
  3. Yusuf C, Biotechnol. Adv., 25, 294, 2007
  4. Kim TH, Korean J. Chem. Eng., 28(11), 2156, 2011
  5. Demirbas A, Appl. Energy, 86, 108, 2009
  6. Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM, Renew. Sust. Energ. Rev., 30, 1035, 2014
  7. Yoo SJ, Oh SK, Lee JM, Korean Chem. Eng. Res., 51(1), 87, 2013
  8. Kim JT, Ahn DG, Park JR, Park JW, Jeong SH, J. Korean Soc. Prec. Eng., 28, 125, 2011
  9. Antonio DLH, Angel DO. andres M, Chem. Soc. Rev., 34, 164, 2005
  10. Hu ZH, Wen ZY, Biochem. Eng. J., 38, 369, 2008
  11. Lee SM, Choi IS, Kim SK, Lee JH, Korean Soc. Biotechnol. Bioeng., 24, 483, 2009
  12. Park JY, Lee GA, Kim KY, Kim KY, Choi SA, Jeong MJ, Oh YK, Korean Chem. Eng. Res., 52(1), 88, 2014
  13. Gomez LD, Steele-King C, McQueen-Mason SJ, New Phytologist, 178, 473, 2008
  14. Nigam PS, Singh A, Prog. energy comb. Sci., 37, 525, 2011
  15. Singh A, Nigam PS, Murphy JD, Bioresour. Technol., 102(1), 10, 2011
  16. Johan B, Ragna P, Folke T, Enz. Microb. Technol., 40, 754, 2007
  17. Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K, Biosci. Biotechnol. Biochem., 72, 805, 2008
  18. Balat M, Balat H, Oz C, Prog. Energy Combust. Sci., 34(5), 551, 2008
  19. Cha HR, In YS, Kim SK, J. Life Sci., 26, 976, 2016
  20. Chen WH, Tu YJ, Sheen HK, Int. J. Energy Res., 34(3), 265, 2010
  21. Song MK, Na CK, J. Korean Soc. New Renewable Energy., 9, 5, 2013
  22. Mandal V, Mohan Y, Hemalatha S, Phcog. Rev., 1, 7, 2007
  23. Raymond R, Ehrman T, Lab. Anal. Proced. No.002, National Renewable Research Laboratory (1996).
  24. Templeton D, Ehrman T, Lab. Anal. Proced. No.002, National Renewable Research Laboratory(1995).
  25. Zhang L, Hong LJ, Zhong LS, Lewis LZ, Bioresour. Technol., 6, 4302, 2011
  26. Benzerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta, 76, 965, 2008
  27. Oh HM, Kim JS, Lee SJ, Korean J. Enviro. Biol., 16, 291, 1998
  28. Jang EK, Shin HK, Pack SP, Korean Soc. Biotechnol. Bioeng., 29, 9, 2014
  29. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673, 2005
  30. Im JU, Hong SS, Lee GD, Park SS, Korean Chem. Eng. Res., 42(5), 485, 2004
  31. Jeong GT, Yang HS, Park SH, Park DH, Korean Soc. Biotechnol. Bioeng., 22, 222, 2007
  32. Seo DI, Kim CJ, Kim SB, Korean Soc. Biotechnol. Bioeng., 29(3), 193, 2014
  33. Kim, Lee ES, Kim W, Suh DJ, Ahn BS, Clean Technol., 17(2), 156, 2011
  34. Park JH, Kim JS, Korean Chem. Eng. Res., 54(1), 1, 2016
  35. Wu FC, Wu JY, Liao YJ, Wang MY, Shih IL, Bioresour. Technol., 156, 123, 2014