Issue
Korean Chemical Engineering Research,
Vol.56, No.2, 204-211, 2018
Water + N-Methyldiethanolamine (MDEA), Water + 2-Amino-2-Methyl-1-Propanol (AMP), MDEA + AMP, Water+ MDEA + AMP 계의 밀도와 과잉부피 측정 및 상관
Measurement and Correlation of Densities and Excess Volumes for Water + N-Methyldiethanolamine (MDEA), Water + 2-Amino-2-Methyl-1-Propanol (AMP), MDEA + AMP and Water + MDEA +AMP systems
Water+N-Methyldiethanolamine (MDEA), Water+2-Amino-2-Methyl-1-Propanol (AMP), MDEA+AMP의 이성분계, Water+MDEA+AMP의 삼성분계에서 밀도를 Anton Paar DMA4500 밀도계를 이용하여 303.15 K에서 333.15 K의 온도범위에서 10 K 간격으로 혼합물의 전체 조성에서 측정하였다. 과잉부피 실험값은 실험적으로 측정된 밀도결과로부터 얻어졌고 Redlich-Kister-Muggianu 식으로 상관하였다. 이성분계로부터 얻은 매개변수를 이용하여 삼성분계에 대한 계산을 수행하였다. 삼성분계의 계산에는 하나의 추가적인 매개변수를 필요로 한다. 검토한 모든 이성분계와 삼성분계는 측정된 조건에서 과잉부피가 음의 값을 가지므로 완전히 섞임을 알 수 있다.
In this study, densities of water + N-Methyldiethanolamine (MDEA), Water + 2-Amino-2-Methyl-1-Propanol (AMP), MDEA + AMP binary systems and Water+MDEA+AMP ternary system were measured over the full range of composition at temperatures from 303.15 K to 333.15 K by using an Anton Paar digital vibrating tube densimeter (DMA4500). The experimental excess volumes have been obtained from the experimental density results and have been fitted using the Redlich-Kister-Muggianu expression. The parameters obtained from the binary excess volume data were used for the correlation of ternary system with one additional ternary parameter for each isotherm. All investigated binary and ternary systems are completely miscible, because the values of excess volume are negative under the examined conditions.
[References]
  1. Wall TF, Proc. Combust. Inst, 31, 31, 2007
  2. Yang H, Xu Z, Fan M, Gupta R, Wall TF, Slimane RB, Bland AE, Wright I, J. Environ. Sci, 20, 14, 2008
  3. Saha AK, Bandyopadhyay SS, Saju P, Biswas AK, Ind. Eng. Chem. Res., 32, 3051, 1993
  4. Kohl AL, Nielsen RB, Gas Purification, 5th ed, Gulf Publishing, Houston, TX(1997).
  5. Bruggink S, Beyad Y, Luo W, MelianCabrer I, Puxty G, Feron P, Chem. Eng. Sci., 126, 446, 2015
  6. Muchan P, Saiwan C, Narku-Tetteh J, Idem R, Supap T, Tontiwachwuthikul P, Chem. Eng. Sci., 170, 574, 2017
  7. Gervasia J, Duboisa L, Thomasa D, Energy Procedia, 63, 1854, 2014
  8. Austgen DM, Rochelle GT, Peng X, Chen CC, Ind. Eng. Chem. Res., 28, 1060, 1989
  9. Voutsas E, Vrachnos A, Magoulas K, Fluid Phase Equilib., 224(2), 193, 2004
  10. Mandal BP, Kundu M, Bandyopadhyay SS, J. Chem. Eng. Data, 48(3), 703, 2003
  11. Chen CC, Song YH, AIChE J., 50(8), 1928, 2004
  12. Shokouhi M, Jalili AH, Samani F, Hosseini-Jenab M, Fluid Phase Equilib., 404, 96, 2015
  13. Chan C, Maham Y, Mather AE, Mathonat C, Fluid Phase Equilib., 198(2), 239, 2002
  14. Sobrino M, Concepcion EI, Gomez-Hernandez A, Martin MC, Segovia JJ, J. Chem. Thermodyn., 98, 231, 2016
  15. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  16. Pinto DDD, Monteiro JGMS, Johnsen B, Svendsen HF, Knuutila H, International Journal of Greenhouse Gas Control, 25, 173, 2014
  17. Rafiee HR, Frouzesh F, Thermochim. Acta, 611, 36, 2015
  18. Chowdhury FI, Khan MAR, Saleh MA, Akhtar S, J. Mol. Liq., 182, 7, 2013