Issue
Korean Chemical Engineering Research,
Vol.56, No.2, 191-203, 2018
전동볼밀의 복합재 제조공정에서 각종 실험조건에 따른 입자형상 변화 및 DEM 시뮬레이션을 통한 밀링 효율의 고찰 - 회전속도, 매체크기, 매체재질의 영향
Particle Morphology Behavior and Milling Efficiency by DEM Simulation during Milling Process for Composites Fabrication by Traditional Ball Mill on Various Experimental Conditions- Effect of Rotation Speed, Ball Size, and Ball Material
이 연구는 각각 크기와 재질이 다른 3 가지 종류의 분쇄 매체를 이용하여 회전속도와 밀링 시간의 따른 구리 (Cu) 분말의 형상변화의 과정에 미치는 영향을 관찰하고, 볼 움직임의 DEM시뮬레이션을 행하였다. 전동볼밀에서 볼 움직임의 3차원 시뮬레이션을 통해 분쇄 메커니즘을 규명하기 위하여 분쇄매체의 힘, 운동에너지, 매체 운동속도 등을 계산하였다. 시뮬레이션에서는 회전속도, 볼 재질, 운동속도, 마찰계수 등을 실제 실험조건과 동일하게 조건을 맞추어 투입되는 에너지의 변화량도 계산하였다. 주사전자현미경 결과를 살펴보면 볼 직경이 작을 때 입자형상이 불규칙한 형태에서 구형 형태로 변화하는 것을 알 수 있었다.
This study was investigated the effect of the morphology change of copper (Cu) powders under the different rotational speed and milling time by using three kinds of grinding media with different size and materials, and performed DEM simulations of ball behavior. In order to clarify the mechanism of grinding by three - dimensional simulations of the ball behavior in a traditional ball mill, the force, kinetic energy, and medium velocity of the grinding media were calculated. In the simulation, the amount of change of the input energy was also calculated by adjusting the rotational speed, ball material, kinetic velocity, and friction coefficient in the same as the actual experimental conditions. The scanning electron microscope results show that the particle morphology changes from irregular to spherical when the ball size is small.
[References]
  1. Lee GG, Hashimoto H, Watanabe R, Mater. Trans., JIM., 36, 548, 1995
  2. Chikosha S, Shabalala TC, Chikwanda HK, Powder Technol., 264, 310, 2014
  3. Pavlovic MG, Pavlovic LJ, Maksimovic VM, Nikolic ND, Popov KI, Int. J. Electrochemical Sci., 5, 1862, 2010
  4. Mikli V, Kaerdi H, Kulu P, Besterci M, Proc. Estonian Acad. Sci. Eng., 7(1), 22, 2001
  5. Choi HK, Lee W, Kim DU, Kumar S, Ha JH, Kim SS, Lee JG, Korean J. Chem. Eng., 26(1), 300, 2009
  6. Xiao L, Guo YL, Qu DY, Deng BH, Liu HX, Tang DP, J. Power Sources, 225, 286, 2013
  7. Bagheri GH, Bonadonna C, Manzella I, Vonlanthen P, Powder Technol., 270, 141, 2015
  8. Pons MN, Vivier H, Belaroui K, Bernard-Michel B, Cordier F, Oulhana D, Dodds JA, Powder Technol., 103(1), 44, 1999
  9. Uddin SM, Mahmud T, Wolf C, Glanz C, Kolaric I, Volkmer C, Holler H, Wienecke U, Roth S, Fecht H, Compos. Sci. Technol., 70, 2253, 2010
  10. Chikosha S, Shabalala TC, Chikwanda HK, Powder Technol., 264, 310, 2014
  11. Simon J, Kenneth P, Sedimentology, 55(1), 31, 2008
  12. Ichinkhorloo B, Bor A, Uyanga B, Lee J, Choi H, Korean J. Mater. Res., 26(11), 611, 2016
  13. Uyanga B, Amgalan B, Batchuluun I, Lee J, Choi H, Korean Chem. Eng. Res., 55(4), 546, 2017
  14. Choi H, Kim S, Hwang JY, J. Miner. Soc. Korea, 20(2), 135, 2007
  15. Choi H, Wang L, Korean J. Mater. Res., 17(10), 532, 2007
  16. Choi H, Lee W, Kim S, Adv. Powder Technol., 20, 305, 2009
  17. Choi H, Wang L, Korean J. Mater. Res., 17(10), 532, 2007
  18. Choi H, Lee W, Kim S, Chung H, Int. J. Appl. Technol., 8(5), 1147, 2011
  19. Sakuragi S, Amgalan B, Lee J, Choi H, Par. Aerosol Res., 11(1), 9, 2015
  20. Bor A, Sakuragi S, Lee J, Choi H, Korean J. Mater. Res., 25(6), 305, 2015
  21. Park YH, Jeong HY, Lee BW, Kim SK, Kim WY, Bae CH, Korean Inst. Met. Mater., 34, 896, 1996
  22. Ryu H, Korean J. Mater. Res., 7(4), 339, 1997
  23. Mori H, Mio H, Kano J, Saito F, Powder Technol., 143, 230, 2004
  24. Kim SS, Park GT, Chung HS, Choi HK, Korean Soc. Mech. Eng., 5, 154, 2008
  25. Cho HC, Powder Engineering Summer Workshop, 16, 54, 2002
  26. Jayasundara CT, Yang RY, Yu AB, Miner. Eng., 33, 66, 2012