Issue
Korean Chemical Engineering Research,
Vol.56, No.1, 125-132, 2018
메탄으로부터 촉매와 유전체 장벽 방전 반응기를 활용한 C2 화합물의 합성
Synthesis of C2 Chemicals from Methane in a Dielectric Barrier Discharge (DBD) Plasma Bed
유전체 장벽 방전 반응기에서 규칙적인 메조기공 갖는 촉매를 사용하여 플라즈마 에너지를 이용한 메탄의 직접전환 반응 연구를 수행하였다. 촉매는 MgO/OMA (ordered mesoporous alumina), MgO/γ-Al2O3와 MgO/α-Al2O3를 사용하여 반응하였다. Pulse 고전압을 이용한 플라즈마 반응기에서 촉매 MgO/OMA를 사용하였을 때 C2 화합물의 선택도는 67%로 최고의 성능을 나타내었다. 금속산화물 종류, 규칙적인 메조기공 구조, 알루미나의 상변화 그리고 전원공급방식에 따른 효과를 고려하여 반응기 성능 및 생성물 분포를 비교하였다. BET (Brunauer, Emmett, Teller), X 선 회절, 주사전자현미경, 열 무게 분석으로 촉매의 반응 전후의 특성을 분석하였다.
The direct synthesis of C2 chemical directly from methane was studied by employing catalysts with ordered mesopores in a dielectric barrier discharge plasma reactor. The reaction was carried out using MgO/OMA (ordered mesoporous alumina), MgO/γ-Al2O3 and MgO/α-Al2O3 as catalysts. When MgO/OMA was applied, it showed excellent performance in the plasma reactor using pulse-type power supply and the selectivity of C2 chemicals was measured as 67%. The effects of metal oxide type, textural property of support, alumina phase and power supply type on catalytic performance were investigated especially in terms of C2 chemical formation. BET (Brunauer, Emmett, Teller), X-ray diffraction, transmission electron microscope and thermogravimetric analysis were used to investigate the characterization of the catalyst before and after the reaction.
[References]
  1. Wood DA, Nwaoha C, Towler BF, J. Natural Gas Science Engineering, 9, 196, 2012
  2. Taifan W, Baltrusaitis J, Appl. Catal. B: Environ., 198, 525, 2016
  3. Howarth RW, Santoro R, Ingraffea A, Climatic Change, 106(4), 679, 2011
  4. Behroozsarand A, Zamaniyan A, J. Clean Prod., 142, 2315, 2017
  5. Parshall GW, J. Mol. Catal., 4(4), 243, 1978
  6. Martinez M, Michelin MD, Rivalta I, Russo N, Sicilia E, Inorg. Chem., 44(26), 9807, 2005
  7. Hutchings GJ, Scurrell MS, Woodhouse JR, Chem. Soc. Rev., 18, 251, 1989
  8. Lunsford JH, Angew. Chem.-Int. Edit., 34(9), 970, 1995
  9. Xu YD, Lin LW, Appl. Catal. A: Gen., 188(1-2), 53, 1999
  10. Guo A, Wu C, He P, Luan Y, Zhao L, Shan W, Cheng W, Song H, Catal. Science Technology, 6(4), 1201, 2016
  11. Kasinathan P, Park S, Choi WC, Hwang YK, Chang JS, Park YK, Plasma Chem. Plasma Process., 34(6), 1317, 2014
  12. Pietruszka B, Heintze M, Catal. Today, 90(1-2), 151, 2004
  13. Istadi, Amin NAS, Fuel, 85(5-6), 577, 2006
  14. Morris SM, Fulvio PF, Jaroniec M, J. American Chem. Soc., 130(45), 15210, 2008
  15. Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. American Chemical Society, 130(11), 3465, 2008
  16. Ashpis D, Laun M, Griebeler E, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2012).
  17. Lee HW, Ryu SG, Park MK, Park HB, Hwang KC, Korean J. Chem. Eng., 41(3), 368, 2003
  18. Hooshmand N, Rahimpour MR, Jahanmiri A, Taghvaei H, Shirazi MM, Ind. Engineering Chemistry Research, 52(12), 4443, 2013
  19. Khalifeh O, Mosallanejad A, Taghvaei H, Rahimpour MR, Shariati A, Appl. Energy, 169, 585, 2016
  20. Rajendran M, Bhattacharya AK, Mater. Lett., 39(3), 188, 1999
  21. Korf SJ, Roos JA, Veltman LJ, Ommen JG, Ross JRH, Appl. Catal., 56(1), 119, 1989
  22. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183, 2008