Issue
Korean Chemical Engineering Research,
Vol.56, No.1, 85-95, 2018
폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정을 이용한 악취폐가스의 처리
Treatment of Malodorous Waste Air by a Biofilter Process Equipped with a Humidifier Composed of Fluidized Aerobic and Anoxic Reactor
본 연구에서는 폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정으로 이루어진 바이오필터시스템을 구축하여, 돈사 및 계사 설비, 퇴비공장 또는 공공시설에서 발생되는 황화수소, 암모니아 및 휘발성 유기화합물을 포함한 악취폐가스에 대한 처리효율을 제고하고 적정 작업조건을 구축하였다. 복합 악취폐가스 처리실험에서, 암모니아 부하의 경우 폐가스 가습조에서 약 75%가 제거되고, 후 공정인 바이오필터에서 20%이상 제거되었다. 톨루엔 부하의 경우 폐가스 가습조에서 약 20%가 제거되고, 후공정인 바이오필터에서 70% 이상 제거되었다. 따라서 물에 용해도가 높은 암모니아의 경우에는 폐가스 가습조에서 주로 제거되었고, 용해도가 낮은 톨루엔의 경우는 바이오필터에서 주로 제거되었다. 한편 황화수소는 폐가스 가습조에서 거의 흡수되어 바이오필터에서 검출되지 않았다. 황화수소 및 톨루엔의 공급을 중단하였을 때에, 암모니아 부하는 폐가스 가습조에서 약 65%가 제거되고 후 공정인 바이오필터에서 나머지 약 35% 정도가 제거되어, 거의 100%의 암모니아 부하가 제거되었다. 폐가스 가습조에서는 암모니아 외에 톨루엔 및 황화수소의 부하가 추가된 복합 악취폐가스의 경우보다 약 10% 더 적게 암모니아가 제거되었는데, 이것은 탈질에 필요한 톨루엔과 같은 유기화합물의 공급 중단에 기인하였다. 바이오필터시스템의 feed가, 1)복합 악취폐가스일 때, 2)암모니아 폐가스일 때에; 기존 폐가스 가습조 용수에 yeast extract를 보충한 경우 또는 yeast extract를 첨가하지 않고 탄소원으로 glucose를 첨가한 경우, 각각의 경우에 폐가스 가습조에서 흡수되는 암모니아질소 흡수율은, 각각 약 0.28mg/min, 약 0.23 mg/min 및 약 0.27 mg/min으로 산출되었다. 한편 각각의 무산소조에서 탈질율은 0.42 mg/min, 0.55mg/min, 및 약 0.27 mg/min이었다. 또한 폐가스 가습조(유동상 호기조)의 bubble column 모델링에서 유동상 호기조 단위부피당 bubble의 비표면적(a)과 향상된 물질전달계수(E Ky)의 곱의 값은 0.12/hr로 평가되었다.
In this research, a biofilter system equipped with a biofilter process and a humidifier composed of a fluidized aerobic and an anoxic reactor, was constructed to treat odorous waste air containing hydrogen sulfide, ammonia and VOC, frequently generated from pig and poultry housing facilities, compost manufacturing factories and publicly owned facilities. Its optimum operating condition was revealed and discussed. In the experiment of complex feed, the ammonia of fed-waste air was removed by ca. 75% and more than 20% at the stage of the humidifier and the biofilter, respectively. The toluene of the fed-waste air was removed by ca. 20% and more than 70% at the stage of the humidifier and the biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of the humidifier and the biofilter, respectively. In addition, hydrogen sulfide was almost absorbed at the stage of the humidifier so that it was not detected at the biofilter process. In the experiment of ammonia-containing feed, the ammonia of fed-waste air was removed by ca. 65% and 35% at the stage of the humidifier and the biofilter, respectively. Its removal efficiency of ammonia at the stage of the humidifier was 10% less than that in the experiment of complex feed, due to no supply of such carbon source as toluene required in the process of denitrification. In the experiments of complex feed, ammonia-containing feed with and without (instead, glucose) the addition of yeast extract, the absorption rates of ammonia-nitrogen were ca. 0.28 mg/min, 0.23 mg/min and 0.27 mg/min, respectively. The corresponding denitrification rates in the anoxic reactor were 0.42 mg/min, 0.55 mg/min and 0.27 mg/min, respectively. In addition, in the modeling of bubble column(the fluidized aerobic reactor of the humidifier) process, the value of specific surface area(a) of bubbles multiplied by enhanced mass transfer coefficient (E Ky) was evaluated to be 0.12/hr.
[References]
  1. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C, Food & Agriculture Organization of the UN(2006).
  2. FAO Statistical Yearbook 2013 (World Food and Agriculture), Food & Agriculture Organization of the UN(2013).
  3. http://www.eea.europa.eu/data-and-maps/data/airbase-theeuropean-air-quality-database-8.
  4. Jacobsen BH, Canterbury, New Zealand (2011).
  5. Lemay SP, Martel M, Belzile M, Zegan D, Feddes J, Godbout S, Pelletier F, CSBE/SCGAB Annual Conference Rodd’s Brudenell River Resort, Prince Edward Island, Canada (2009).
  6. Melse RW, Ogink NWM, Transactions ASAE, 48(6), 2303, 2005
  7. Van der Heyden C, Demeyer P, Volcke EIP, Biosystems Engineering, 134, 74, 2015
  8. Kamstra A, Blom E, Terjesen BF, Aquacult. Eng., 78, 9, 2017
  9. Summerfelt ST, Aquacult. Eng., 34(3), 275, 2006
  10. Timmons MB, Holder J, Ebeling JM, Aquacult. Eng., 34(3), 332, 2006
  11. Greiner AD, Timmons MB, Aquacult. Eng., 18(3), 189, 1998
  12. Pfeiffer TJ, Wills PS, Aquacult. Eng., 45(2), 51, 2011
  13. Eding EH, Kamstra A, Verreth JAJ, Huisman EA, Klapwijk A, Aquacult. Eng., 34(3), 234, 2006
  14. Malone RF, Pfeiffer TJ, Aquacult. Eng., 34(3), 389, 2006
  15. Harremoes P, New York, 71-109(1978).
  16. Bovendeur J, Eding EH, Henken AM, Aquaculture, 63, 329, 1987
  17. Hem LJ, Rusten B, Water Res., 28(6), 1425, 1994
  18. Zhu S, Chen S, Aquacult. Eng., 24, 213, 2001
  19. Prehn J, Waul CW, Pedersen LF, Arvin E, Water Res., 46(11), 3516, 2012
  20. Lim KH, Jung YJ, Park LS, Min KS, Korean Chem. Eng. Res., 39(5), 600, 2001
  21. Lee EJ, Lim KH, Korean Chem. Eng. Res., 48(3), 382, 2010
  22. Lee EJ, Lim KH, Korean Chem. Eng. Res., 45, 808, 2008
  23. Rout PR, Bhunia P, Dash RR, Bioresour. Technol., 244, 484, 2017
  24. Kim JK, Park KJ, Cho KS, Nam SW, Park TJ, Bajpai R, Bioresour. Technol., 96(17), 1897, 2005
  25. Park CB, Lee SB, Biotechnol. Bioprocess Eng., 3, 115, 1998
  26. Mikami Y, Yoneda H, Tatsukami Y, Aoki W, Ueda M, AMB Express, 7(10), 83, 2017
  27. Wang JL, Yang N, Process Biochem., 39(10), 1223, 2004