Issue
Korean Chemical Engineering Research,
Vol.56, No.1, 79-84, 2018
디지털 전기천공을 이용한 미세조류 내 단백질 전달 연구
Delivery of Protein into Microalgae by the Digital Electroporation
본 연구에서는 기 개발된 액적 접촉충전 기반의 디지털 전기천공 기술을 이용해 미세조류에 단백질을 전달하는 연구를 수행 하였다. Chlamydomonas reinhardtii 중 세포벽이 존재하는 야생종 cc-125에 적용한 결과, 살아 있는 세포의핵 내부로 형광 단백질 GFP가 10% 이상의 비교적 높은 효율로 전달될 수 있음을 확인하였다. 또한 인가 전기장의 크기 변화에 따른 단백질 전달 효율을 살펴봄으로써 최적의 단백질 전달 효율을 위한 전기천공 전기장 조건을 도출하였다(960 V/cm). 전달 물질의 크기에 따른 영향 분석을 위해 추가로 수행한 핵산 염색 형광 염료 Yo-Pro-1의 전달 특성분석 결과, 크기에 따른 차이가 존재함에도 최적의 전달 효율을 나타내는 인가 전기장의 세기 조건은 매우 유사한 경향을 보였다. 마지막으로 본 연구 결과의 의미 및 크리스퍼 유전자 가위 기술의 적용 등 향후 활용방안에 대해서 논의하였다.
In the present study, we performed electroporation to deliver protein into microalgae using previously developed digital electroporation system. Green fluorescence protein was successfully delivered into a live microalgae cell nucleus without cell wall removal. By investigating the effects of applied voltage on the protein delivery efficiency, optimal electroporation electric field condition was found (960 V/cm). We also investigated the delivery of Yo-Pro-1 into cell to examine the size effects of delivered materials and found that there is little size effects on the optimal condition. Finally, the implications of the present results and future work are discussed.
[References]
  1. Wijffels RH, Barbosa MJ, Science, 329(5993), 796, 2010
  2. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M, Renew. Sust. Energ. Rev., 16, 3043, 2012
  3. Guo SL, Zhao XQ, Tang Y, Wan C, Alam MA, Ho SH, Bai FW, Chang JS, J. Biotechnol., 163, 61, 2013
  4. Gimpel JA, Specht EA, Georgianna DR, Mayfield SP, Curr. Opin. Chem. Biol., 17, 489, 2013
  5. Scranton MA, Ostrand JT, Fields FJ, Mayfield SP, Plant J., 82, 523, 2015
  6. Specht EA, Miyake-Stoner S, Mayfield SP, Biotech. Lett., 32, 1373, 2010
  7. Jo JM, Shin SG, Jung HJ, Min BR, Kim SK, Kim JW, Korean Chem. Eng. Res., 55(4), 542, 2017
  8. Shimogawara K, Fujiwara S, Grossman A, Usuda H, Genetics, 148, 1821, 1998
  9. Basiouni S, Fuhrmann H, Schumann J, Biotechniques, 3, 1, 2012
  10. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, et al., Sci. Rep.-UK, 6, 27810, 2016
  11. Im DJ, Korean J. Chem. Eng., 32(6), 1001, 2015
  12. Im DJ, Clean Technol., 20(4), 354, 2014
  13. Im DJ, Noh J, Moon D, Kang IS, Anal. Chem., 83, 5168, 2011
  14. Im DJ, Ahn MM, Yoo BS, Moon D, Lee DW, Kang IS, Langmuir, 28(32), 11656, 2012
  15. Im DJ, Yoo BS, Ahn MM, Moon D, Kang IS, Anal. Chem., 85, 4038, 2013
  16. Ahn MM, Im DJ, Kang IS, Analyst, 138, 7362, 2013
  17. Lee DW, Im DJ, Kang IS, J. Phys. Chem., 117, 3426, 2013
  18. Ahn MM, Im DJ, Kim JG, Lee DW, Kang IS, J. Phys. Chem. Lett., 5, 3021, 2014
  19. Ahn MM, Im DJ, Yoo BS, Kang IS, Electrophoresis, 36(17), 2086, 2015
  20. Choi CY, Im DJ, Korean Chem. Eng. Res., 54(4), 568, 2016
  21. Im DJ, Jeong SN, Yoo BS, Kim B, Kim DP, Jeong WJ, Kang IS, Anal. Chem., 87, 6592, 2015
  22. Wang SN, Lee LJ, Biomicrofluidics, 7, 011301, 2013
  23. Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545, 2010
  24. Im DJ, Jeong SN, Biochem. Eng. J., 122, 133, 2017
  25. Kurita H, Takahashi S, Asada A, Matsuo M, Kishikawa K, Mizuno A, Numano R, PLOS ONE, 10, e01442, 2015