Issue
Korean Chemical Engineering Research,
Vol.56, No.1, 66-72, 2018
옥수수 대로부터 생리활성물질 생산 증대를 위한 마이크로파 추출 공정 최적화
Optimization of Microwave-assisted Extraction Conditions for Production of Bioactive Material from Corn Stover
옥수수 대는 셀룰로오스와 헤미셀룰로오스 이외에 높은 함량의 리그닌을 포함하고 있어 리그닌 분해를 통해 폴리페놀 생산이 가능하여 천연 항산화물 생산이 가능한 후보이다. 옥수수 대로부터 마이크로파 전처리를 이용해 폴리페놀과 플라보노이드 추출 증대를 위해 반응표면분석법(RSM)을 이용하여 공정조건을 최적화하였다. 폴리페놀과 플라보노이드의 함량은 마이크로파 출력과 추출 시간 증가에 따라 유의하게 증가하는 경향을 보였다(p<0.05). 조건 최적화에 있어 698.6 W, 240 sec, 0 mol 조건에서 최대 TPC 82.4 mg GAE/g DM과 플라보노이드 18.1 mg QE/g DM이 예측되었다. 기존 추출법인 속실렛과 마이크로파 추출을 비교하였을 때, 마이크로파 추출이 폴리페놀과 플라보노이드 생산에 있어 13.5와 8.0배가 각각 높고 짧은 추출 시간과 낮은 에너지 소비로 기존 추출 대비 효과적인 공정임을 확인하였다. 본 연구는 옥수수 대로부터 유용물질 생산 가능성과 마이크로파 추출법이 상업화 공정 적용이 가능한 효과적인 추출법임을 확인하고 옥수수 대를 이용한 폴리페놀과 플라보노이드 생산을 통해 바이오당 생산과 더불어 부산물 크레딧을 확보하여 바이오 에탄올 가격 경쟁력을 높일 수 있는 추출공정을 제안하였다는 데 의의가 있다고 하겠다.
Corn stover is known as a good candidate for a functional food ingredient when the main lignocellulosic material, lignin, is used as bioactive materials as form of polyphenolic compounds. The purpose of this study was to determine the microwave extraction conditions under which total phenolic compounds (TPC) and flavonoid contents of corn stover were maximized. Microwave-assisted extracts using sulfuric acid ranging from 0 to 1.0 mol with extraction time between 40 and 240 sec were conducted by using response surface methodology (RSM). Microwave power showed significant effects (p<0.05) and the concentrations of TPC and flavonoids increased with increased level of microwave power and extraction time. The optimum conditions for corn stover extraction were determined as 698.6 W, 240 sec, and 0 mol sulfuric acid, and the predicted value of TPC and flavonoid is 82.4 mg GAE/g DM and 18.1 mg/g DM, respectively. Microwave extraction was evaluated as an economic process with low energy consumption, short extraction and high extraction yield of bioactive including TPC and flavonoids compared to conventional extractions.
[References]
  1. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS, Korean J. Food Sci. Technol., 37(2), 233, 2005
  2. Kim YJ, Biomater. Res., 13, 30, 2009
  3. Jeong GT, Lee KM, Park DH, Korean Chem. Eng. Res., 44(1), 81, 2006
  4. Hong JH, Jeon JL, Lee JH, Lee IS, J. Korean Soc. Food. Sci. Nutr., 36(6), 657, 2007
  5. Cha JY, Ahn HY, Eom KE, Park BK, Jun BS, Cho YS, J. Life Sci., 19(5), 652, 2009
  6. Choi JI, Kim YJ, Kim JH, Song BS, Yoon Y, Byun MW, Kwon JH, Chun SS, Lee JW, Korean Soc. Food Sci. Nutr., 38(2), 131, 2009
  7. Choi K, Lee J, Jo J, Shin S, Kim J, Korean Chem. Eng. Res., 54(3), 310, 2016
  8. Lee YA, Kim HY, Cho EJ, J. Korean Soc Food Sci. Nutr., 34(8), 1151, 2005
  9. Lee J, Shin A, J. Nutr. Health, 48(3), 269, 2015
  10. Cayetano RD, Kim TH, Um BH, Korean Chem. Eng. Res., 52(1), 45, 2014
  11. Pappis CP, Petrou EC, Linkoping, Sweden (2011).
  12. Sung YJ, Kim WJ, Kim DS, Seo YB, Shin SJ, J. Korea TAPPI, 42(2), 2010
  13. Song WY, Shin SJ, Juhn S, J. Korea TAPPI, 49(2), 76, 2017
  14. Na CK, Song MK, Korean Chem. Eng. Res., 50(1), 141, 2012
  15. Folin O, Denis W, J. Biol. Chem., 12, 239, 1912
  16. Park KA, Choi YM, Kang S, Kim MR, Hong J, Korean J. Food Sci. Technol., 47(3), 299, 2015
  17. Bag GC, Devi PG, Bhaigyabati T, Int. J. Pharm. Sci. Rev. Res., 30(1), 154, 2015
  18. Shin JY, Kim H, Kim DG, Baek GH, Jeong HS, Yu KW, J. Korean Soc. Food Sci. Nutr., 42(3), 487, 2013
  19. Lim TS, Kwon OJ, Kwon JH, Kim HK, J. Korean Soc. Food Sci. Nutr., 36(3), 348, 2007
  20. Abad-Garcia B, Berrueta LA, Lopez-Marquez DM, Crespo-Ferrer I, Gallo B, Vicente F, J. Choromatogr., 1154, 87, 2007
  21. Lee EJ, Choi SW, Kim HK, Kwon JH, Korean J. Food Sci. Technol., 40(5), 510, 2008
  22. Lee SB, Lee GD, Kwon JH, J. Korean Soc. Food Sci. Nutr, 28(2), 409, 1999
  23. Kim HK, Do JR, Hong JH, Lee GD, Korean J. Food Preserv, 12, 591, 2005
  24. Min DL, Lim S, Ahn JB, Choi YJ, Korean J. Food Sci. Technol., 42(6), 733, 2010
  25. Lee JH, Kim Y, Lee S, Yoo SH, Korean J. Food Sci. Technol., 46(4), 410, 2014