Issue
Korean Chemical Engineering Research,
Vol.56, No.1, 42-48, 2018
실리콘-탄소나노튜브-탄소 복합체 제조 및 리튬이온전지 응용
Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery
리튬이온전지의 음극재로 높은 이론적인 용량과 낮은 방전 전위 및 무독성을 가진 실리콘이 높은 관심을 받고 있다. 본 연구에서는 리튬이온전지의 고효율 음극재로 활용을 위한 실리콘-탄소나노튜브-탄소(Si-CNT-C) 복합체를 제조하였다. 복합체 제조를 위해서는 에어로졸 자기조립과 후 열처리 공정을 사용하였다. 제조된 Si-CNT-C 복합체는 구형이었으며 평균 입자크기는 2.72 μm이었다. 복합체의 크기는 실리콘 및 탄소나노튜브의 농도가 증가할수록 커지는 것을 확인하였다. Si-CNT-C 복합체는 탄소나노튜브와 글루코스에서 탄화된 탄소가 실리콘 입자들을 중심으로 표면에 부착된 형태이었다. 제조된 Si-CNT-C 복합체는 전기화학 분석을 통해 순수한 실리콘보다 우수한 사이클 성능을 보여주고 있음을 확인하였다.
Silicon has attracted extensive attention due to its high theoretical capacity, low discharge potential and non-toxicity as anode material for lithium ion batteries. In this study, Si-CNT-C composites were fabricated for use as a high-efficiency anode material in a lithium ion battery. Aerosol self-assembly and post-heat treatment processes were employed to fabricate the composites. The morphology of the Si-CNT-C composites was spherical and an average particle size was 2.72 μm. The size of the composite increased as concentration of Si and CNT increased in the precursor solution. In the Si-CNT-C composites, CNT and C carbonized from glucose were attached to the surface of Si particles. Electrochemical measurement showed that the cycle performance of Si-CNT-C composites was better than that of silicon particles.
[References]
  1. Armand M, Tarascon JM, Nature, 451, 652, 2008
  2. Wu H, Cui Y, Nano Today, 7(5), 414, 2012
  3. Bruce PG, Scrosati B, Tarascon JM, Angew. Chem.-Int. Edit., 47, 2930, 2008
  4. Guo YG, Hu JS, Wan LJ, Adv. Mater., 20(15), 2878, 2008
  5. Xue L, Xu G, Li Y, Li S, Fu K, Shi Q, Zhang X, ACS Appl. Mater. Interfaces, 5, 21, 2012
  6. Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah MR, Wang C, Nano Lett., 13, 470, 2013
  7. Goodenough JB, Park KS, J. Am. Chem. Soc., 135(4), 1167, 2013
  8. Li H, Zhou H, Chem. Commun., 48, 1201, 2012
  9. Esmanski A, Ozin GA, Adv. Funct. Mater., 19(12), 1999, 2009
  10. Kohandehghan A, Kalisvaart P, Kupsta M, Zahiri B, Amirkhiz BS, Li Z, Mermarzadeh EL, Bendersky LA, Mitlin D, J. Mater. Chem., 1, 1600, 2013
  11. Xiao J, Xu W, Wang DY, Choi DW, Wang W, Li XL, Graff GL, Liu J, Zhang JG, J. Electrochem. Soc., 157(10), A1047, 2010
  12. Oumellal Y, Delpuech N, Mazouzi D, Dupre N, Gaubicher J, Moreau P, Soudan P, Lestriez B, Guyomard D, J. Mater. Chem., 21, 6201, 2011
  13. Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR, Electrochem. Solid State Lett., 4(9), A137, 2001
  14. Kang KY, Shin DO, Lee YG, Kim KM, Korean Chem. Eng. Res., 51(4), 411, 2013
  15. Yen JP, Chang CC, Lin YR, Shen ST, Hong JL, J. Alloy. Compd., 598, 184, 2014
  16. Wu J, Zhu Z, Zhang H, Fu H, Li H, Wang A, Zhang H, Hu Z, J. Alloy. Compd., 596, 86, 2014
  17. Terranova ML, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M, J. Power Sources, 246, 167, 2014
  18. Lee DH, Seo SD, Lee GH, Hong HS, Kim DW, J. Alloy. Compd., 606, 204, 2014
  19. Wang J, Wang JZ, Sun ZQ, Gao XW, Zhong C, Chou SL, Liu HK, J. Mater. Chem., 2, 4613, 2014
  20. Zhai C, Du N, Zhang H, Yu J, Wu P, Xiao C, Yang D, Nanoscale, 3, 1798, 2011
  21. Zhai C, Du N, Zhang H, Yu J, Yang D, ACS Appl. Mater. Interfaces, 3, 4067, 2011
  22. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F, Carbon, 37, 61, 1999
  23. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE, J. Electrochem. Soc., 147(8), 2845, 2000
  24. Kim BG, Shin WH, Lim SY, Kong BS, Choi JW, J. Electrochem. Sci. Technol., 3, 116, 2012
  25. Wang J, Liu DH, Wang YY, Hou BH, Zhang JP, Wang RS, Wu XL, J. Power Sources, 307, 738, 2016
  26. Oh J, Kim H, Chang H, Lee BK, Jang HD, Lim JW, Int. J. Mater. Res., 106, 937, 2015
  27. Jang HD, Kim H, Kil DS, Chang H, J. Nanosci. Nanotechnol., 13, 2334, 2013
  28. Byon HR, Lee SW, Chen S, Hammond PT, Shao-Horn Y, Carbon, 49, 457, 2011
  29. Jang HD, Kim H, Chang H, Kim J, Roh KM, Choi JH, Cho BG, Park E, Kim H, Luo J, Huang J, Sci Rep, 5, 9431, 0215