Issue
Korean Chemical Engineering Research,
Vol.56, No.1, 24-28, 2018
철-크롬 산화환원흐름전지에서 Nafion막의 철-크롬 Crossover
Iron-Chrome Crossover through Nafion Membrane in Iron-Chrome Redox Flow Battery
산화환원흐름전지(Redox Flow Battery, RFB)는 대용량 에너지 저장장치로 바나듐 산화환원흐름전지가 대표적인 RFB인데, VRFB는 고가인 점이 문제다. 철-크롬RFB는 저가의 활물질을 사용해 경제적인 점이 장점인데, 성능이 낮은 점이 해결해야할 과제다. 낮은 성능의 한 원인이 활물질의 크로스오버인데, 본 연구에서 철과 크롬 이온의 Nafion 막크로스오버 및 Nafion 막의 안정성에 대해 실험하였다. 철과 크롬이온의 Nafion 막 투과도는 각각 5.5×10-5, 6.0×10-5 cm2/min 이었다. Nafion 막에서 바나듐 이온의 투과도 2.9×10-6 cm2/min 보다 18.9~20.7배 높아 철과 크롬 이온의 Nafion 막 크로스오버가 성능 저하의 한 원인임을 보였다. 온도 증가에 따라 크로스오버가 급증(활성화 에너지 38.8 kJ/mol)하므로 낮은 온도에서 구동하는 것이 크로스오버에 의한 성능감소를 저하시키는 방법임을 나타냈다. Nafion막은 3M HCl용액에서 비교적 안정적이었다.
The redox flow battery (RFB) is a large-capacity energy storage equipment, and the vanadium redox flow cell is a typical RFB, but VRFB is expensive. Iron-chrome RFBs are economical because they use low-cost active materials, but their low performance is a urgent problem. In this study, the crossover of iron and chromium ion through Nafion membrane and the stability of Nafion membrane in HCl solution were investigated. The permeability of iron and chrome ion through Nafion were 5.5×10-5 and 6.0×10-5 cm2/min, respectively, which was 18.9~20.7 times higher than that of vanadium ion (2.9×10-6 cm2/min). The crossover of iron and chromium ions were shown to be a cause of performance decrease in Iron-chrome RFB. As the temperature increases, the crossover increases rapidly (activation energy 38.8 kJ/ mol), indicating that operation at low temperature is a methode to reduce the performance loss due to crossover. Nafion membranes were relatively stable in 3 M HCl solution.
[References]
  1. de Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC, J. Power Sources, 160(1), 716, 2006
  2. Prifti H, Parasuraman A, Winardi S, Lim TM, Maria KS, Membranes, 2, 275, 2012
  3. Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V, J. Power Sources, 247, 1040, 2014
  4. Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970, 2013
  5. Thaller LH, NASA Lewis Research Centre, TM X-71540(1974).
  6. Zeng YK, Zhao TS, An L, Zhou XL, Wei L, J. Power Sources, 300, 438, 2015
  7. Cheng DS, Hollax E, J. Electrochem. Soc., 132, 269, 1985
  8. Hollax E, Cheng DS, Carbon, 23, 655, 1985
  9. Johnson DA, Reid MA, J. Electrochem. Soc., 132, 1058, 1985
  10. Wu C, Scherson D, Calvo E, Yeager E, Reid M, J. Electrochem. Soc., 133, 2109, 1986
  11. Gahn RF, Hagedorn NH, Ling JS, NASA, Lewis Research Centre, TM-83385(1983).
  12. Oh SJ, Jeong JH, Shin YC, Lee MS, Lee DH, Chu CH, Kim YS, Park KP, Korean Chem. Eng. Res., 51(6), 671, 2013
  13. Giner-Sanz JJ, Ortega EM, Int. J. Hydrog. Energy, 89, 13206, 2014
  14. Kim T, Lee H, Sim W, Lee J, Kim S, Lim T, Park K, Korean J. Chem. Eng., 26(5), 1265, 2009
  15. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013
  16. Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597, 2006