Issue
Korean Chemical Engineering Research,
Vol.56, No.1, 14-23, 2018
Effect of Dodecylbenzene Sulfonic Acid on the Behavior of Asphaltene Aggregation in a Solvent Deasphalting System
The effect of dodecylbenzene sulfonic acid (DBSA) with different addition amount of DBSA (MDBSA), temperatures and solvent-to-oil ratio (SOR, v/v) on asphaltene aggregation in a solvent deasphalting system was investigated. Increasing the MDBSA at SOR 10 and 55 oC caused the asphaltene removal ratio (ARR) to increase first, then maximize at 1 wt% of MDBSA and then decrease continuously. Based on the SARA (saturate, aromatic, resin, asphaltene) composition, the adsorption amount of DBSA on the asphaltene surface and the self-aggregation of the DBSA, the reason for the change in ARR with MDBSA was found due to the adsorption mechanism. In addition, the asphaltene-resin- DBSA colloidal size confirmed the change of adsorption behavior between the asphaltene and DBSA. Based on the results of this study, a hypothetical adsorption mechanism of DBSA on asphaltene aggregation in the solvent deasphalting system was conceived of and proposed.
[References]
  1. Banerjee DK, Penn Well Corp., USA, 3-10, 101-112(2012).
  2. Al-Sahhaf TA, Fahim MA, Elkilani AS, Fluid Phase Equilib., 194, 1045, 2002
  3. Rogel E, Leon O, Energy Fuels, 15(5), 1077, 2001
  4. Andersen SI, Speight JG, Pet. Sci. Technol., 19(1-2), 1, 2001
  5. Lee JM, Shin S, Ahn S, Chun JH, Lee KB, Mun S, Jeon SG, Na JG, Nho NS, Fuel Process. Technol., 119, 204, 2014
  6. Huc AY, Editions Technip, France, 231-256(2011).
  7. Alboudwarej H, Beck J, Svrcek WY, Yarranton HW, Akbarzadeh K, Energy Fuels, 16(2), 462, 2002
  8. Ahn S, Shin S, Im SI, Lee KB, Nho NS, Korean J. Chem. Eng., 33(1), 265, 2016
  9. Pan H, Firoozabadi A, AIChE. J., 46, 416, 2000
  10. Soorghali F, Zolghadr A, Ayatollahi S, Energy Fuels, 29(9), 5487, 2015
  11. Leon O, Contreras E, Rogel E, Dambakli G, Espidel J, Acevedo S, Energy Fuels, 15(5), 1028, 2001
  12. Leon O, Rogel E, Urbina A, Andujar A, Lucas A, Langmuir, 15(22), 7653, 1999
  13. Junior LCR, Ferreira MS, da Silva Ramos AC, J. Pet. Sci. Eng., 51, 26, 2006
  14. Chang CL, Fogler HS, Langmuir, 10(6), 1749, 1994
  15. Chang CL, Fogler HS, Langmuir, 10(6), 1758, 1994
  16. Hashmi SM, Zhong KX, Firoozabadi A, RSC Advances, 8, 8778, 2012
  17. Goual L, Firoozabadi A, AIChE J., 50(2), 470, 2004
  18. Wei D, Orlandi E, Simon S, Sjoblom J, J. Therm. Anal. Calorim., 120(3), 1835, 2015
  19. ASTM D 3279, Standard Test Method for n-Heptane Insolubles; ASTM International: USA, DOI: 10.1520/D3279-12E01.
  20. Fan TG, Buckley JS, Energy Fuels, 16(6), 1571, 2002
  21. Fan T, Wang J, Buckley JS, SPE/DOE Improved Oil Recovery Symposium, April, Tulsa, DOI: 10.2118/75228-MS (2002).
  22. Nelson GW, Perry M, He SM, Zechel DL, Horton JH, Colloids Surf. B: Biointerfaces, 78(1), 61, 2010
  23. Xu XF, Zhang PZ, Coal Conversion, 19(1), 72, 1996
  24. Li C, Wang JQ, Sui LT, Cui M, Deng WN, Acta Petrol Sin: Pet Process Section, 29(3), 459, 2013
  25. Wang JQ, Li C, Zhang LL, Que GH, Li ZM, Energy Fuels, 23(7), 2625, 2009
  26. Abdallah WA, Taylor SD, J. Phys. Chem., 112(48), 48963, 2008
  27. Ramalho JBVS, Lechuga FC, Lucas EF, Quim. Nova., 33(8), 1664, 2010
  28. Mansur CRE, de Melo AR, Lucas EF, Energy Fuels, 26(8), 4988, 2012
  29. Pereira JC, Lopez I, Salas R, Silva F, Fernandez C, Urbina C, Lopez JC, Energy Fuels, 21(3), 1317, 2007
  30. Pfeiffer J, Saal RNJ, J. Phys. Chem., 44(2), 139, 1940
  31. Alcazar-Vara LA, Zamudio LS, Buenrostro-Gonzalez E, J. Dispersion Sci. Technol., 37(11), 1544, 2016
  32. Sun ZH, Li D, Ma HX, Tian PP, Li XK, Li WH, Zhu YH, Fuel Process. Technol., 138, 413, 2015
  33. Seshadri KS, Young DC, Cronauer DC, Fuel, 64(1), 22, 1985
  34. Mullins OC, Sheu EY, Hammami A, Marshall AG, Springer, New York, 89-202(2007).
  35. Andersen SI, Christensen SD, Energy Fuels, 14(1), 38, 2000
  36. Zhang J, Qiu Y, Yu DY, Chin. J. Appl. Chem., 26(12), 1480, 2009
  37. Somasundaran P, Zhang L, J. Pet. Sci. Eng., 52(1-4), 198, 2006