Issue
Korean Chemical Engineering Research,
Vol.55, No.6, 846-853, 2017
슬러지 순산소 유동층 연소특성
Combustion Characteristics of Waste Sewage Sludge using Oxy-fuel Circulating Fluidized Bed
순환유동층 모사장치와 30 kWth급 파일럿 연소기를 활용하여 슬러지 순산소 유동층 연소특성을 살펴보았다. 순환유 동층 모사실험에서 최소유동화속도(Umf)는 0.120 m/s로 계산되었고, 고속유동화를 위한 공탑속도는 2.5 m/s 이상으로 결정되었다. 파일럿 연소실험에서는 일반공기 및 21~40% 순산소 연소실험이 수행되었다. 배출가스 온도의 경우 21~25% 순산소 연소가 일반공기 및 30% 이상의 순산소 연소보다 상대적으로 높았다. 또한, 배출가스 중 CO2 배출농도가 21~25% 순산소 연소 범위에서 80% 이상으로 나타났다. 이를 고려한 전반적인 연소특성을 살펴 보았을 때 25% 순산소 연소가 본 슬러지 연료 연소에 대한 장시간 운전에 있어 보다 적합한 것으로 사료된다.
Cold bed and 30 kWth pilot bed tests using circulating fluidized bed (CFB) were conducted to apply oxyfuel technology for waste sludge combustion as a carbon capture and storage technology. In cold bed test, the minimum fluidization velocity (umf) and superficial velocity for fast fluidization was determined as 0.120 m/s and 2.5 m/s, respectively. In the pilot test, air and oxy-fuel combustion experiments for waste sludge were conducted using CFB unit. The flue-gas temperature in 21~25% oxy-fuel combustion was higher than that of air and up to 30% oxy-fuel combustion. In addition, the concentration of carbon dioxide was more than 80% with the oxygen injection range from 21% to 25% in oxy-fuel CFB waste sludge combustion.
[References]
  1. Ogada T, Werther J, Fuel Sci. Technol. Int., 75, 617, 1996
  2. Lee JK, Lee KH, Lee KH, Chun HS, Korean Chem. Eng. Res., 28(4), 470, 1990
  3. Lee JK, Lee KH, Jang JG, Lee NS, Lim JS, Chun HS, Korean Chem. Eng. Res., 30(2), 228, 1992
  4. Lee JK, Lee KH, Jang JG, Lim JH, Lim JS, Chun HS, Korean Chem. Eng. Res., 30(4), 499, 1992
  5. Latva-Somppi J, Kauppinen EI, Valmari T, Ahonen P, Gurav AS, Kodas TT, Johanson B, Fuel Process. Technol., 54(1-3), 79, 1998
  6. Kaferstein P, Gohla M, Tepper H, Reimer H, 14th International Conference Fluidized Bed Combustion, May, Vancouver(1977).
  7. Albrecht J, Schelhaas KP, 14th International Conference Fluidized Bed Combustion, May, Vancouver(1977).
  8. North BC, Eleftheriades CM, 14th International Conference Fluidized Bed Combustion, May, Vancouver(1977).
  9. Werther J, Ogada T, Prog. Energy Combust. Sci., 25, 55, 1995
  10. Final Report entitled, Korea Energy Technology Evaluation Institute, Ministry of Trade, Industry and Energy (2013).
  11. IPCC Special Report on Carbon Dioxide and Storage, http://www.ipcc.ch.
  12. Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF, Prog. Energy Combust. Sci., 31(4), 283, 2005
  13. Chen L, Yong SZ, Ghoniem AF, Prog. Energy Combust. Sci., 38(2), 156, 2012
  14. Molburg JC, Doctor RD, Brockmeier NF, 18th Annual International Pittsburgh Coal Conference, December, Newcastle(2001).
  15. Wang CS, Berry GF, Chang KC, Wolsky AM, Combust. Flame, 72, 301, 1988
  16. Gotou T, Yamada T, Kiga T, Misawa N, Hashimoto K, Proceeding of the 2nd International Oxy-fuel Combustion Conference, September, Yeppoon(2011).
  17. Croiset E, Thambimuthu KV, Fuel Sci. Technol. Int., 80, 2117, 2001
  18. Jia L, Tan Y, Wu Y, Anthony EJ, Proceeding of the 2nd International Oxy-fuel Combustion Conference, September, Yeppoon(2011).
  19. Tourunen A, Leino T, Pikkarainen T, Nevalainen H, Kuivalainen R, Proceeding of the 2nd International Oxy-fuel Combustion Conference, September, Yeppoon(2011).
  20. Arias B, Peveda C, Rubiera F, Pis JJ, Fuel Sci. Technol. Int., 87, 2753, 2008
  21. Fryda L, Sobrion C, Cieplik M, van de Kamp WL, Fuel Sci. Technol. Int., 89, 1889, 2010
  22. Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD, Prog. Energy Combust. Sci., 36(5), 581, 2010
  23. Basu P, Combustion and Gasification in Fluidized Beds, Taylor & Francis(2006).
  24. Kunii D, Lenenspiel O, Fluidization Engineering, Butterworth-Heinemann(1991).
  25. Hannes JP, Mathematical Modeling of Circulating Fluidized Bed Combustion, Kartographie und Druck Peter List(1996).
  26. Horio M, Hydrodynamics of Circulating Fluidized Beds, Circulating Fluidized Bed Technology IV(1997).