Issue
Korean Chemical Engineering Research,
Vol.55, No.6, 807-815, 2017
파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구
Study on Kinetics and Thermodynamics of Rotary Evaporation of Paclitaxel for Removal of Residual Pentane
본 연구에서는 회전증발에서 건조 온도에 따른 파클리탁셀의 잔류 펜탄 제거 효율에 대해 조사하였으며 건조 공정에 대한 동역학 및 열역학적 해석을 수행하였다. 모든 온도(25, 30, 35, 40, 45 °C)에서 건조 초기에 많은 양의 잔류용매가 제거되었으며 건조 온도가 증가할수록 건조 효율은 증가하였다. 동역학적 해석을 위해 실험데이터 값을 다섯 종류의 건조 모델식(Newton, Page, Modified Page, Henderson and Pabis, Geometric)에 적용하였으며, 이 중 Henderson and Pabis 모델이 큰 결정계수 값과 작은 평균평방근편차 RMSD 값을 가져 가장 적합함을 확인하였다. 또한 열역학적 해석을 수행한 결과, 회전증발에서의 활성화 에너지 Ea는 4.9815 kJ/mol이었으며, 표준 Gibbs 자유에너지 변화(ΔG0)는 음수 값인 반면 표준 엔탈피 변화(ΔH0)와 표준 엔트로피 변화(ΔS0)는 양수 값을 나타내어 건조 공정이 자발적 흡열반응이며 비가역적으로 수행됨을 알 수 있었다.
This study investigated the removal efficiency of residual pentane from paclitaxel according to the drying temperature in the case of rotary evaporation, and performed a kinetic and thermodynamic analysis of the drying process. At all the temperatures (25, 30, 35, 40, and 45 °C), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Five drying models (Newton, Page, modified Page, Henderson and Pabis, Geometric) were then used for the kinetic analysis, where the Henderson and Pabis model showed the highest coefficient of determination (r2) and lowest root mean square deviation (RMSD), indicating that these models were the most suitable. Furthermore, in the thermodynamic analysis of the rotary evaporation, the activation energy (Ea) was 4.9815 kJ/mol and the standard Gibbs free energy change (ΔG0) was negative, whereas the standard enthalpy change (ΔH0) and standard entropy change (ΔS0) were both positive, indicating that the drying process was spontaneous, endothermic, and irreversible.
[References]
  1. Wani MC, Taylor H, Wall ME, Coggon P, McPhail AT, J. Am. Chem. Soc., 93(9), 2325, 1971
  2. Kim JH, Korean J. Biotechnol. Bioeng., 21(1), 1, 2006
  3. Ha GS, Kim JH, Korean Chem. Eng. Res., 54(2), 229, 2016
  4. Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38(2), 188, 2009
  5. Rao K, Hanuman J, Alvarez C, Stoy M, Juchum J, Davies R, Baxley R, Pharm. Res., 12(7), 1003, 1995
  6. Baloglu E, Kingston DGI, J. Nat. Prod., 62(7), 1003, 1999
  7. Choi HK, Son JS, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol
  8. Lee CG, Kim JH, Korean Chem. Eng. Res., 54(1), 89, 2016
  9. Hancock BC, Parks M, Pharm. Res., 17(4), 397, 2000
  10. Hancock BC, Zografi G, J. Pharm. Sci., 86, 1, 1997
  11. Khadka P, Ro JE, Kim HM, Kim IS, Kim JT, Kim HI, Cho JM, Yun GA, Lee JH, J. Pharm. Sci., 9(6), 304, 2014
  12. Pyo SH, Cho JS, Choi HJ, Han BH, Dry. Technol., 25(10), 1759, 2007
  13. Karunanithi AT, Acquah C, Achenie LEK, Sithambaram S, Suib SL, Comput. Chem. Eng., 33(5), 1014, 2009
  14. Liggins RT, Hunter WL, Burt HM, J. Pharm. Sci., 86(12), 1458, 1997
  15. Lee JH, Gi US, Kim JH, Kim Y, Kim SH, Oh HM, Bull. Korean Chem. Soc., 22(8), 925, 2001
  16. International Conference on Harmonisation, Federal Register, 62, 67377-67388 (1997).
  17. Kim JH, Park HB, Gi US, Kang IS, Choi HK, Hong SS, Korean J. Biotechnol. Bioeng., 16(3), 233, 2001
  18. Lee JY, Kim JH, Process Biochem., 48(3), 545, 2013
  19. Drouzas AE, Tsami E, Saravacos GD, J. Food Eng., 39(2), 117, 1999
  20. Ha GS, Kim JH, Process Biochem., 51(10), 1664, 2016
  21. Gi US, Min B, Lee JH, Kim JH, Korean J. Chem. Eng., 21(4), 816, 2004
  22. Kawashima Y, York P, Adv. Drug Deliv. Rev., 60, 297, 2008
  23. Lee JY, Kim JH, Korean J. Microbiol. Biotechnol., 40(2), 169, 2012
  24. Lee CG, Kim JH, Process Biochem., 50(6), 1031, 2015
  25. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985, 2004
  26. Diamante LM, Munro PA, Sol. Eng., 51(4), 271, 1993
  27. Aregbesola A, Ogunsina BS, Sofolahan AE, Chime NN, Niger Food J., 33(1), 83, 2015
  28. Page GE, Purdue University, West Lafayette, Indiana, USA(1949).
  29. White GM, Loewer TC, Ross IJ, Trans. ASAE, 23(1), 0224, 1978
  30. Henderson SM, Pabis S, J. Agric. Eng. Res., 6(3), 169, 1961
  31. Chinweuba DC, Nwakuba RN, Okafor VC, Am. J. Food. Sci. Nutr. Res., 3(1), 1, 2016
  32. Prasad BE, Pandey KK, Eur. J. Wood Prod., 70, 353, 2012
  33. Ozkan IA, Akbudak B, Akbudak N, J. Food Eng., 78(2), 577, 2007
  34. Lee H, Han CS, Chungbuk National University, Cheongju, Korea (2009).
  35. Niladevi KM, Sukumaran RK, Jacob N, Anisha GS, Prema P, Microbiol. Res., 164(1), 105, 2009
  36. Kim HS, Kim JH, Process Biochem., 56, 163, 2017
  37. Babalis SJ, Belessiotis VG, J. Food Eng., 63(3), 449, 2004
  38. Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159, 2011