Issue
Korean Chemical Engineering Research,
Vol.55, No.6, 762-766, 2017
소규모 역삼투 담수화 시설에서 에너지 회수장치의 필요성에 대한 연구
Study on the Necessity of Energy Recovery Device in Small Scale Reverse Osmosis Desalination Plant
에너지 회수장치는 역삼투 공정에서 에너지 소모량을 줄이기 위해 사용된다. 그러나 해수담수화 시장에서 소규모 에너지 회수장치(< 100 m3/d)를 찾기는 쉽지 않다. 우리나라에서 음용수 생산을 위한 역삼투 해수담수화 시설은 대부분 도서지역이나 선박에서 소규모로 운영되고 있다. 즉, 국내에는 소규모 에너지 회수장치 수요가 잠재하고 있다. 본 연구에서는 고압펌프의 현실적인 효율과 국내 전력비 단가 등을 고려하여, 소규모 역삼투 공정의 에너지 소모량을 에너지 회수장치의 적용 여부 및 설치 장소(예: 육상, 도서, 선박)에 따라 비교 분석하였다. 분석 결과, 에너지 회수장치 적용 시 전력비는 1,914.1원/m3까지 절감될 수 있고 소규모 시설과 선박에서는 절감효과가 증가되는 것을 확인하였다. 소규모 역삼투 담수화 시설이 대부분을 차지하는 국내 현실과 규모가 작아질수록 에너지 회수장치에 대한 전력비 절감효과가 커지는 본 연구의 결과를 고려한다면, 소규모 에너지 회수장치의 개발 필요성이 크다고 할 수 있다.
Energy recovery device (ERD) is used to save energy consumption in seawater reverse osmosis processes. However, small-scale ERDs (<100 m3/d) are hardly observed in seawater desalination market. In South Korea, most of seawater desalination plants for drinking water production are small-scaled and have been operated in island areas or on ships. Thus, the effect of ERDs for these small-scale SWRO processes should not be neglected. In this work, the smallscale SWRO processes are designed and analyzed in terms of energy consumption with/without ERD. The realistic efficiencies of high pressure pumps are considered for the energy analyses. The unit cost of electricity depending on the application place (e.g., inland and island areas, on ships) is investigated to calculate the energy cost for unit water production in various SWRO applications classified by plant capacity, application place, and the installation of ERD. As a result, the energy cost can be saved up to 1,640.4 KRW/m3 when ERD is applied, and the saving effect increases at smaller plants on ships. In conclusion, the development of small-scale ERDs are necessary because small-scale SWRO processes are dominant in Korean seawater desalination market, and the electricity saving effect becomes higher at smallerscaled system.
[References]
  1. Pruss-Ustun AB, Robert; Gore, Fiona; Bartram, Jamie, Safer water, better health. World Health Organization, 2008.
  2. Chekli L, Phuntsho S, Kim JE, Kim J, Choi JY, Choi JS, Kim S, Kim JH, Hong S, Sohn J, Shon HK, J. Membr. Sci., 497, 430, 2016
  3. Jeon J, Park B, Yoon Y, Kim S, Desalin. Water Treat., 57, 26612, 2016
  4. Park SW, Park YS, Chang HN, Korean Chem. Eng. Res., 28(1), 124, 1990
  5. Kim Y, Lee JH, Lee KH, Kim YC, Oh DW, Lee J, Korean Chem. Eng. Res., 51(2), 240, 2013
  6. Lee H, Ryu H, Lim JH, Kim JO, Lee JD, Kim S, Desalin. Water Treat., 57, 9009, 2016
  7. Park B, Lee J, Kim M, Won YS, Lim JH, Kim S, Desalin. Water Treat., 57, 7910, 2016
  8. Kim S, Cho D, Lee MS, Oh BS, Kim JH, Kim IS, Desalination, 238(1-3), 1, 2009
  9. Zhu AH, Christofides PD, Cohen Y, J. Membr. Sci., 339(1-2), 126, 2009
  10. Farooque AM, Jamaluddin ATM, Al-Reweli AR, Jalaluddin PAM, Al-Marwani SM, Al-Mobayed AA, Qasim AH, Desalination, 219(1-3), 137, 2008
  11. http://www.energyrecovery.com/wp-content/uploads/2014/12/0916_ER_desalProducts_brochure_interactive_v3.pdf.
  12. http://high-pressurepumps.danfoss.com/products/energy-recovery-devices.
  13. https://www.flowserve.com.
  14. http://osmorec.com/product/technology.
  15. http://cyber.kepco.co.kr/ckepco.
  16. https://home.kepco.co.kr/kepco.
  17. Subramani A, Badruzzaman M, Oppenheimer J, Jacangelo JG, Water Research, 45, 1907, 2011
  18. Bermudez-Contreras A, Thomson M, Desalin. Water Treat, 13, 195, 2010
  19. Dow Liquid Separations, Filmtec Reverse Osmosis Membranes Technical Manual, The Dow Chemical Company Form No. 609-00071-0705, 2005.
  20. Kim DI, Kim J, Shon HK, Hong S, J. Membr. Sci., 483, 24, 2015
  21. Xiong W, Li XF, Xiang JY, Wu QY, Appl. Microbiol. Biotechnol., 78(1), 29, 2008
  22. http://www.demkor.co.kr/02/02_win1.php.
  23. http://www.law.go.kr.