Issue
Korean Chemical Engineering Research,
Vol.55, No.6, 731-744, 2017
삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술의 원리와 최신 연구현황
Principle and Research Trends of Triplet-triplet Annihilation Upconversion
삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술(Triplet-triplet annihilation upconversion, TTA-UC)은 특정 에너지 조건을 만족시키는 유기물들의 조합에 의해 낮은 에너지의 광자를 높은 에너지의 광자로 변환시키는 특수한 광화학적 공정이다. TTA-UC는 태양광 스펙트럼 중 낮은 에너지 탓에 활용되지 못하고 소실되는 광자를 고 에너지의 광자로 변환시킴으로써 태양광에 기반한 광학기기들의 광에너지 전환효율을 획기적으로 향상시킬 수 있는 기술로 평가받고 있다. 본 논문은 아직 국내학계에 생소한 연구분야인 TTA-UC현상의 광화학적 원리와 특징을 소개하고, TTA-UC와 관 련한 최신 연구동향과 응용분야, 그리고 향후 연구방향을 고찰하였다.
Triplet-triplet annihilation upconversion (TTA-UC) is a special photochemical process that converts low energy photons to higher energy photon via combination of organic chemicals which fulfill specific energetic criteria. TTA-UC has been known as attractive technology that is able to enhance energy conversion efficiency of the photonic devices based on sunlight, which is achieved by conversion of wasted low energy photons in solar spectrum into higher energy photon. In the present paper, we introduced the photochemical mechanism and characteristics of TTA-UC phenomenon, which is yet unfamiliar to the domestic academia, and investigated recent research status, application, and future research directions of TTA-UC technology.
[References]
  1. Cates EL, Chinnapongse SL, Kim JH, Kim JH, Environ. Sci. Technol., 46(22), 12316, 2012
  2. Wang F, Liu XG, J. Am. Chem. Soc., 130(17), 5642, 2008
  3. Kim DH, Ryu JH, Chung JH, Eun JW, Shim KB, Cho SY, Korean J. Chem. Eng., 29(4), 519, 2012
  4. Jung KY, Kim WH, Korean Chem. Eng. Res., 53(5), 620, 2015
  5. Parker CA, Hatchard CG, Proc. Chem. Soc. London., 386-387(1962).
  6. Parker CA, Hatchard CG, J. Mol. Spectrosc., 311-319(1964).
  7. McCusker CE, Castellano FN, Top. Curr. Chem., 374, 19, 2016
  8. Cheng YY, Raphael TK, Clady GCR, Tayebjee MJY, Ekins-Daukes NJ, Crossley MJ, Schmidt TW, Phys. Chem. Chem. Phys., 12, 66, 2010
  9. Cheng YY, Fuckel B, Khoury T, Clady RGCR, Tayebjee MJY, Ekins-Daukes NJ, Crossley MJ, Schmidt TW, J. Phys. Chem. Lett., 1, 1795, 2010
  10. Kim JH, Deng F, Castellano FN, Kim JH, ACS Photonics, 1(4), 382, 2014
  11. Haefele A, Blumhoff J, Khnayzer RS, Castellano FN, J. Phys. Chem. Lett., 3, 299, 2012
  12. Islangulov RR, Kozlov DV, Castellano FN, Chem. Commun., 30, 3776, 2005
  13. Singh-Rachford TN, Castellano FN, Inorg. Chem., 48(6), 2541, 2009
  14. Singh-Rachford TN, Castellano FN, J. Phys. Chem. Lett., 1, 195, 2010
  15. Singh-Rachford TN, Castellano FN, Coord. Chem. Rev., 254, 2560, 2010
  16. Singh-Rachford TN, Haefele A, Ziessel R, Castellano FN, J. Am. Chem. Soc., 130(48), 16164, 2008
  17. Yakutkin V, Aleshchenkov S, Chernov S, Miteva T, Nelles G, Cheprakov A, Baluschev S, Chem. Eur. J., 14, 9846, 2008
  18. Singh-Rachford TN, Castellano FN, J. Phys. Chem. A, 113(20), 5912, 2009
  19. Khnayzer RS, Blumhoff J, Harrington JA, Haefele A, Deng F, Castellano FN, Chem. Commun., 48, 209, 2012
  20. Kim JH, Kim JH, J. Am. Chem. Soc., 134, 17487, 2012
  21. Liu Q, Yin BR, Yang TS, Yang YC, Shen Z, Yao P, Li FY, J. Am. Chem. Soc., 135(13), 5029, 2013
  22. Kim JH, Kim JH, ACS Photonics, 2, 633, 2015
  23. Kim JH, Deng F, Castellano FN, Kim JH, ACS Photonics, 1, 382, 2014
  24. Ye C, Wang J, Wang X, Ding P, Liang Z, Tao X, Phys. Chem. Chem. Phys., 18, 3430, 2016
  25. Tanaka K, Inafuku K, Chujo Y, Chem. Commun., 46, 4378, 2010
  26. Turshatov A, Busko D, Baluschev S, Miteva T, Landfester K, New. J. Phys., 13, 2011
  27. Wohnhaas C, Turshatov A, Mailander V, Lorenz S, Baluschev S, Miteva T, Landfester K, Macromol. Biosci., 11, 772, 2011
  28. Askes SHC, Mora NL, Harkes R, Koning RI, Koster B, Schmidt T, Krosa A, Bonnet S, Chem. Commun., 51, 9137, 2015
  29. Kwon OS, Kim JH, Cho JK, Kim JH, ACS Appl. Mater. Interfaces, 7, 318, 2015
  30. Islangulov RR, Lott J, Weder C, Castellano FN, J. Am. Ceram. Soc., 129, 12652, 2007
  31. Kim JH, Deng F, Castellano FN, Kim JH, Chem. Mater., 24, 2250, 2012
  32. Singh-Rachford TN, Lott J, Weder C, Castellano FN, J. Am. Chem. Soc., 131(33), 12007, 2009
  33. Merkel PB, Dinnocenzo JP, J. Lumines., 129, 303, 2009
  34. Monguzzi A, Frigoli M, Larpent C, Tubino R, Meinardi F, Adv. Funct. Mater., 22(1), 139, 2012
  35. Turshatov A, Busko D, Kiseleva N, Grage SL, Howard IA, Richards BS, ACS Appl. Mater. Interfaces, 9, 8280, 2017
  36. Monguzzi A, Mauri M, Bianchi A, Dibbanti MK, Simonutti R, Meinardi F, J. Phys. Chem., 120, 2609, 2016
  37. Liu Q, Yang TS, Feng W, Li FY, J. Am. Chem. Soc., 134(11), 5390, 2012
  38. Kamada K, Sakagami Y, Mizokuro T, Fujiwara Y, Kobayashi K, Narushima K, Hirata S, Vacha M, Mater. Horiz., 4, 83, 2017
  39. Oldenburg M, Turshatov A, Busko D, Wollgarten S, Adams M, Baroni N, Welle A, Redel E, Woll C, Richards BS, Howard IA, Adv. Mater., 28(38), 8477, 2016
  40. Thevenaz DC, Lee SH, Guignard F, Balog S, Lattuada M, Weder C, Simon YC, Macromol. Rapid Commun., 37(10), 826, 2016
  41. Yanai N, Kimizuka N, Chem. Commun., 52, 5354, 2016
  42. Kouno H, Ogawa T, Amemori S, Mahato P, Yanai N, Kimizuka N, Chem. Sci., 7, 5224, 2016
  43. Mahato P, Yanai N, Sindoro M, Granick S, Kimizuka N, J. Am. Chem. Soc., 138(20), 6541, 2016
  44. Kim HI, Weon SH, Kang HM, Hagstrom AL, Kwon OS, Lee YS, Choi WY, Kim JH, Environ. Sci. Technol., 50, 11184, 2016
  45. Kim HI, Kwon OS, Kim SJ, Choi WY, Kim JH, Energy Environ. Sci., 9, 1063, 2016
  46. Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fuckel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW, J. Phys. Chem. Lett., 4(12), 2073, 2013
  47. Cheng YY, Fuckel B, MacQueen RW, Khoury T, Clady RGCR, Schulze TF, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW, Energy Environ. Sci., 5, 6953, 2012
  48. Schulze TF, Czolk J, Cheng YY, Fuckel B, MacQueen RW, Khoury T, Crossley MJ, Stannowski B, Lips K, Lemmer J, Colsmann A, Schmidt TW, J. Phys. Chem., 116, 22794, 2012
  49. Schulze TF, Schmidt TW, Energy Environ. Sci., 8, 103, 2015
  50. Cheng YY, Nattestad A, Schulze TF, MacQueen RW, Fuckel B, Lips K, Wallace GG, Khoury T, Crossley MJ, Schmidt TW, Chem. Sci., 7, 559, 2016
  51. Li C, Koenigsmann C, Deng F, Hagstrom A, Schmuttenmaer CA, Kim JH, ACS Photonics, 3, 784, 2016
  52. Cheng YY, Nattestad A, Schulze TF, MacQueen RW, Fuckel B, Lips K, Wallace GG, Khoury T, Crossley MJ, Schmidt TW, Chem. Sci., 7, 559, 2016
  53. Hagstrom AL, Deng F, Kim JH, ACS Photonics, 4, 127, 2017
  54. Wohnhaas C, Mailaender V, Droge M, Filatov MA, Busko D, Avlasevich Y, Baluschev S, Miteva T, Landfester K, Turshatov A, Macromol. Biosci., 13, 1422, 2013
  55. Kwon OS, Song HS, Conde J, Kim HI, Artzi N, Kim JH, ACS Nano, 10, 1512, 2016
  56. Liu Q, Wang W, Zhan C, Yang T, Kohane DS, Nano Lett., 16, 4516, 2016
  57. Tian B, Wang Q, Su Q, Feng W, Li F, Biomaterials, 112, 10, 2017
  58. Yanai N, Kozue M, Amemori S, Kabe R, Adachic C, Kimizuka N, J. Mater. Chem., 4, 6447, 2016
  59. Zhao W, Castellano FN, J. Phys. Chem. A, 110(40), 11440, 2006
  60. Jiang X, Guo X, Peng J, Zhao D, Ma Y, ACS Appl. Mater. Interfaces, 8, 11441, 2016
  61. Peng J, Guo X, Jiang X, Zhao D, Ma Y, Chem. Sci., 7, 1233, 2016