Issue
Korean Chemical Engineering Research,
Vol.55, No.5, 609-617, 2017
푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가
Process Development and Economic Evaluation for Catalytic Conversion of Furfural to Tetrahydrofurfuryl Alcohol
목질계 바이오매스는 바이오 연료 및 바이오 화학제품 생산을 위한 재생 가능 자원이다. 푸르푸랄(furfural, FF)은 목질계 바이오매스의 헤미셀룰로스로부터 화학적 촉매전환으로 유도되는 주요한 플랫폼 케미칼이다. 테트라히드로푸르푸릴 알코올(Tetrahydrofurfuryl alcohol, THFA)은 FF의 유도체로 열적.화학적 안정성을 지닌 친환경 용매로 이용 가능하다. FF를 THFA로 전환하는 실험적 연구가 다수 존재함에도 불구하고, FF로부터 THFA의 대량생산에 관한 경제적 실현가능성에 관한 연구는 거의 수행되지 않았다. 개발된 전환기술의 상용화 단계에서 기술적 병목점 확인과 스케일업 문제의 해결을 위한 정보를 얻기 위해 실증플랜트 규모의 연구가 필요하다. 본 연구에서는 FF의 THFA로의 화학적 촉매전환에 대해 공정 시뮬레이션 및 기술경제성 평가가 수행되며, 3가지 단계(통합 공정 디자인, 열 통합, 경제성평가)를 거친다. 실험연구 결과를 기반으로 전환공정과 분리공정을 포함하는 실증플랜트 규모의 통합공정이 설계된다. FF 처리량은 일일 255톤이며, FF로부터 THFA로의 수율은 63.2~67.9 mol%이다. 통합공정에 대해 열 통합을 수행하여 가열요구량을 최초 대비 14.4~16.4% 감소시킬 수 있었다. 최종적으로 경제성 평가를 통해 전체 공정의 주요 비용원을 분석하고 THFA의 최소판매가격을 결정하였다. 개발된 공정에서 생산되는 THFA의 최소판매가격은 1톤당 2,120~2,340 달러로, 현재 THFA의 시장 가격에 근접한다.
Lignocellulosic biomass is a renewable resource for production of biofuels and biochemicals. Furfural (FF) is an important platform chemical catalytically derived from the hemicellulose fraction of biomass. Tetrahydrofurfuryl alcohol (THFA) is a FF derivative and can be used as an eco-friendly solvent with thermal and chemical stability. Despite large numbers of experimental studies for catalytic conversion of FF to THFA, few research have conducted on the economic feasibility for large-scale THFA production from FF. At the stage of assessment of the potential for commercialization of conversion technology, a large-scale process study is required to identify technological bottleneck and to obtain information for solving scale-up problems. In this study, process simulation and technoeconomic evaluation for catalytic conversion of FF to THFA are performed, as the following three steps: integrated process design, heat integration, and economic evaluation. First, a large-scale process including conversion and separation processes is designed based on experimental results. When the FF processing rate is 255 tonnes per day, the FF-to-THFA yields are 63.2~67.9 mol%. After heat integration, the heating requirements are reduced by 14.4~16.4%. Finally, we analyze the cost drivers and calculate minimum selling price of THFA by economic evaluation. The minimum selling price of THFA for the developed process are $2,120~2,340 per tonne, which are close to the current THFA market price.
[References]
  1. Chheda JN, Huber GW, Dumesic JA, ANGEW CHEM INT EDIT, 46(38), 7164-7183(2007).
  2. Jeong GT, Korean Chem. Eng. Res., 52(4), 492, 2014
  3. Lee SG, Park S, Korean Chem. Eng. Res., 44(1), 23, 2006
  4. Ahn SJ, Cayetano RD, Kim TH, Kim JS, Korean Chem. Eng. Res., 53(1), 1, 2015
  5. Cayetano RD, Kim TH, Um BH, Korean Chem. Eng. Res., 52(1), 45, 2014
  6. Kim JB, Kim JS, Korean Chem. Eng. Res., 54(6), 806, 2016
  7. Martin MA, New Biotechnol, 27(5), 596, 2010
  8. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14(2), 578, 2010
  9. Council NR, National Academies Press (2012).
  10. Sen SM, Alonso DM, Wettstein SG, Gurbuz EI, Henao CA, Dumesic JA, Maravelias CT, Energ. Environ. Sci., 5(12), 9690, 2012
  11. Sen SM, Henao CA, Braden DJ, Dumesic JA, Maravelias CT, Chem. Eng. Sci., 67(1), 57, 2012
  12. Han J, Sen SM, Alonso DM, Dumesic JA, Maravelias CT, Green Chem., 16(2), 653, 2014
  13. Han J, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Bioresour. Technol., 182, 258, 2015
  14. Han J, Sen SM, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Comput. Chem. Eng., 81, 57, 2015
  15. Kim S, Han J, Bioresour. Technol., 204, 1, 2016
  16. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J, National Renewable Energy Laboratory (NREL), Golden, Colorado (2002).
  17. Kazi FK, Fortman J, Anex R, Kothandaraman G, Hsu D, Aden A, Dutta A, National Renewable Energy Laboratory (NREL), Golden, Colorado (2010).
  18. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, National Renewable Energy Laboratory (NREL), Golden, Colorado (2011).
  19. Byun J, Han J, APPL ENERG, 171, 483, 2016
  20. Han J, Energy Conv. Manag., 138, 511, 2017
  21. Kim S, Han J, INT J ENERG RES, (2017).
  22. Lange JP, van der Heide E, van Buijtenen J, Price R, Chemsuschem, 5(1), 150, 2012
  23. Tike MA, Mahajani VV, Ind. Eng. Chem. Res., 46(10), 3275, 2007
  24. http://www.frontresearch.com/news/global-tetrahydrofurfuryltetrahydrofurfurylalcohol-market-witnesses-strong-competition/.
  25. Nagaraja BM, Padmasri AH, Raju BD, Rao KSR, J. Mol. Catal. A-Chem., 265(1-2), 90, 2007
  26. Zhang B, Zhu Y, Ding G, Zheng H, Li Y, Green Chem., 14(12), 3402, 2012
  27. Han J, J. Ind. Eng. Chem., 48, 173, 2017