Issue
Korean Chemical Engineering Research,
Vol.55, No.3, 379-384, 2017
LiCl 용융염에서 NiO를 혼합한 희토류 산화물의 파이로 전해환원 특성
Pyro-Electrochemical Reduction of a Mixture of Rare Earth Oxides and NiO in LiCl molten Salt
LiCl 용융염에서 희토류 산화물의 환원율을 높이기 위해 NiO와 혼합하여 전해환원을 실시하였다. Cyclic voltammetry (CV) 실험을 통해 LiCl 용융염 내에서 혼합산화물의 전기화학적 환원거동을 조사하였다. 혼합산화물로 제작된 환원전 극과 그라파이트 산화전극 사이에 일정한 작동전압을 인가하여 이론전하량 대비 다양한 전하량을 공 한 후 중간생성 물의 결정구조를 XRD를 이용하여 분석하였다. NiO 산화물을 첨가함으로써 전기전도성이 좋은 Ni 금속 주위로 희토류 산화물이 환원되어 RE-Ni 합금형태의 금속으로 완전히 전환되었으며, 합금을 형성하는 반응 메커 즘을 제시하였다.
An electrochemical reduction of a mixture of NiO and rare earth oxides has been conducted to increase the reduction degree of rare earth oxides. Cyclic voltammetry (CV) measurement was carried out to determine the electrochemical reduction behavior of the mixed oxide in molten LiCl medium. Constant voltage electrolysis was performed with various supplied charges to understand the mechanism of electrochemical reduction of the mixed oxide as a working electrode. After completion of the electrochemical reduction, crystal structure of the reaction intermediates was characterized by using an X-ray diffraction method. The results clearly demonstrate that the rare earth oxide was converted to RE-Ni intermetallics via co-reduction with NiO.
[References]
  1. Herrmann S, Li S, Simpson MF, Nucl. Technol., 44(3), 361, 2007
  2. Herrmann S, Li S, Nucl. Technol., 171, 247, 2010
  3. Sakamura Y, Kurata M, Inoue T, J. Electrochem. Soc., 153(3), D31, 2006
  4. Sakamura Y, Omori T, Inoue T, Nucl. Technol., 162, 169, 2008
  5. Inoue T, Koyama T, Arai Y, Energy Procedia., 7, 405, 2011
  6. Goff KM, Wass JC, Marsden KC, Teske GM, Nucl. Eng. Technol, 43, 335, 2011
  7. Choi EY, Lee JW, Park JJ, Hur JM, Kim JK, Jung KY, Jeong SM, Chem. Eng. J., 207, 514, 2012
  8. Park BH, Lee CS, Korean Chem. Eng. Res., 50(4), 696, 2012
  9. Choi EY, Hong SS, Park W, Im HS, Oh SC, Won CY, Cha JS, Hur JM, Korean Chem. Eng. Res., 52(3), 279, 2014
  10. Zhang Y, Yin H, Zhang S, Tang D, Yuan Z, Yan T, Zheng W, Wang D, J. Rare Earths, 30(9), 923, 2012
  11. Park BH, Hur JM, Lee HS, J. Korean Radioactive Waste Society, 8(1), 19, 2010
  12. Park SW, Seo CS, Kang DS, Kwon SG, Park SW, J. Korean Radioactive Waste Society, 3(2), 105, 2005
  13. Jeong SM, Shin HS, Cho SH, Hur JM, Lee HS, Electrochim. Acta, 54(26), 6335, 2009
  14. Joseph TB, Sanil N, Shakila L, Mohandas KS, Nagarajan K, Electrochim. Acta, 139, 394, 2014
  15. Kang YH, Hwang SC, Lee HS, Kim EH, Park SW, Lee JH, J. Mater. Process. Technol., 209(11), 5008, 2009
  16. Ryu HY, Jeong SM, Kang YC, Kim JG, Asian Journal of Chemisty, 25(12), 7019, 2013
  17. Hur JM, Kim TJ, Choi IK, Do JB, Hong SS, Seo CS, Nucl. Technol., 162, 192, 2008
  18. Jeong SM, Shin HS, Hong SS, Hur JM, Do JB, Lee HS, Electrochim. Acta, 55(5), 1749, 2010
  19. Lee MW, Choi EY, Jeon SC, Lee J, Park SB, Paek S, Simpson MF, Jeong SM, Electrochem. Commun., 72, 23, 2016
  20. Zhao B, Wang L, Dai L, Cui G, Zhou H, Kumar RV, J. Alloy. Compd., 468(1), 379, 2009
  21. Ji HS, Ryu HY, Choi EY, Cho SW, Simpson MF, Jeong SM, J. Ind. Eng. Chem., 24, 259, 2015
  22. Hayashi H, Minato K, J. Phys. Chem. Solids, 66, 422, 2005
  23. Lim JG, Jeong SM, Korean Chem. Eng. Res., 53(2), 145, 2015