Issue
Korean Chemical Engineering Research,
Vol.55, No.3, 358-362, 2017
커피박으로부터 생리활성물질 생산 증대를 위한 열수추출 공정 개발
Optimization of Hot-water Extraction Conditions of Bioactive Compounds from Coffee Residue Extracts
커피침출 공정의 부산물인 커피박을 이용한 고부가가치 식품 및 화장품 소재 생산을 위해 열수추출 정의 폴리페 놀 추출인자(용매, 온도, 시간, 농도) 최적화를 수행하였다. 실험에 적용 된 모든 추출인자가 폴리페놀 생산에 유의한 효과가 있음을 확인할 수 있었고 NaOH 농도가 폴리페놀 생산에 미치는 효과가 가장 큰 것으로 평가 되었다. 특히, 열수추출 보다는 산 또는 염기를 이용한 열수추출이 폴리페놀 추출 효과가 높았으며 NaOH 0.1 mol 첨가 시 증류수를 이용한 열수추출에 비해 1.5배 추출 효과가 증가하여 열수를 이용한 추출에 비해 염기-열수 추출이 보다 효과적임을 알 수 있었다. 폴리페놀 추출의 최적 조건인 100 °C, 2 mol NaOH와 30 min 추출 조건에서 36.5 mg GAE/g DM를 얻을 수 있었다. 이는 최적화 이전의 열수추출에서 얻은 12.5 mg GAE/g DM 대비 2.9배 증가된 결과로 커피박은 항산화 활성 등 기능성 강화 소재로 식품 및 화장품 산업에 활용이 가능할 것으로 판단된다.
In this study, the optimization of extraction parameters (solvent, temperature, time, solvent concentration) for the maximization of polyphenol extraction was performed to produce value-added food and cosmetic additives using a byproduct of coffee extraction process (coffee residue). All of the extraction parameters evaluated in this experiment had significant effects on polyphenol extraction and the results showed the effect of NaOH concentration on the polyphenol production was most significant among tested parameters. Especially, hot water extraction using acid or base was effective rather than hot-water extraction and the addition of 0.1 mol of NaOH increased 1.5 times extraction concentration compared with hot-water extraction using distilled water. It was found that hot-water extraction with NaOH was more effective than hot-water extraction, and 36.5 mg GAE/g DM was obtained under optimum condition of 100 °C, 2 mol of NaOH and 30 min. This result was 2.9 times higher than that of 12.5 mg GAE/g DM obtained from the hot-water extraction before optimization. Thus, coffee residue could be used for food and cosmetic industry as a high-value additive such as antioxidant.
[References]
  1. Yang I, Lee KH, Oh SC, J. Korean Wood Sci. & Tech., 41, 293, 2013
  2. Go YH, Kang SY, Jang IS, Korean J. Poult. Sci., 39, 223, 2012
  3. Silva MA, Nebra SA, Silva MJM, Sanchez CG, Biomass Bioenerg., 14(5-6), 457, 1998
  4. Park NY, Korean J. Food Sci. Technol., 46, 470, 2014
  5. Wiseman J, Anim. Feed Sci. Technol., 10, 285, 1984
  6. Ko YH, Kang SY, Jang IS, Korean J. Poult. SCI., 39, 223, 2012
  7. Jun SM, Lee JY, Kim HY, Lee YM, Jang HH, Hang GY, Kim HL Park DS, J. Korean Soc. Food. Sci. Nutr., 41, 1197, 2012
  8. Kim HI, Lee JY, Bae JY, Yang SI, Kim HJ, In JM, Kim DC, Foodservice Ind. J., 9, 1, 2013
  9. Slinkard K, Singleton VL, Am. J. Enol. Viticult., 28, 49, 1977
  10. Lee CY, Kim KM, Son HS, Korean J. Food Sci. Technol., 45, 501, 2013
  11. Mussatto SI, Ballesteros LF, Martins S, Teixeira JA, Sep. Purif. Technol., 83, 173, 2011
  12. Shin H, Jeong H, Hwang D, Kim D, Korean Chem. Eng. Res., 52(6), 701, 2014
  13. Blackwell DL, Herald TJ, Bean SR, Gadgil P, Int. J. Food Sci. Technol., 47, 2671, 2012
  14. Seo EJ, Hong ES, Choi MH, Kim KS, Lee SJ, Korean J. Food Sci. Technol., 44, 89, 2012
  15. White BL, Howard LR, Prior RL, J. Agric. Food Chem., 58, 7572, 2010
  16. Cheng A, Yan H, Ha C, Chen X, Wang W, Xie C, Qu J, Gong Z, Shi X, Czech J. Food Sci., 32, 218, 2014
  17. Cayetano RD, Kim TH, Um BH, Korean Chem. Eng. Res., 52(1), 45, 2014
  18. Yun SB, Lee Y, Lee NK, Jeong EJ, Jeong YS, J. Korean Soc. Food Sci. Nut., 43, 570, 2014
  19. Arranz S, Saura-Calixto F, Shaha S, Kroon PA, J. Agric. Food Chem., 57, 7298, 2009
  20. Choi K, Lee J, Jo J, Shin S, Kim J, Korean Chem. Eng. Res., 54(3), 310, 2016