Issue
Korean Chemical Engineering Research,
Vol.54, No.6, 830-837, 2016
불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성
Physical-Chemical Properties of Graphite Foams Produced with Fluorinated Mesophase Pitch
그라파이트 폼의 압축강도를 향상시키기 위하여 메조페이스 핏치를 공기분위기에서 산화안정화 한 후 다양한 불소 부분압으로 처리하였다. 불소화 처리된 메조페이스 핏치의 불소/탄소 표면화학 조성은 불소 부분압에 따라서 약 23.75%~61.48%의 범위를 가진다. 불소화 메조페이스 핏치기반 그라파이트 폼의 압축강도는 겉보기 밀도의 증가에 비례하여 증가되었다. 불소/탄소 표면화학 조성이 35.93%의 값을 갖는 메조페이스 핏치로부터 제조된 그라파이트 폼의 압축강도는 최대 2.93 ± 0.06MPa의 값을 보여 주었으며, 이 값은 미처리된 메조페이스 핏치로부터 제조된 그라파이트 폼과 비교하여 27.95% 증가되었다. 이러한 결과는 표면에너지가 큰 불소 작용기로 인한 메조페이스 핏치간의 계면결합력이 그 압축강도를 증가시켰기 때문으로 여겨진다.
In order to improve the compressive strength of graphite foams (GFms), mesophase pitch (MP) was stabilized in air atmosphere and then fluorinated at different conditions. The Fluorine/Carbon (F/C) in surface-chemical contents of fluorinated MP has range of 23.75%~61.48% according to the different fluorine partial pressure. The compressive strengths of GFms prepared from fluorinated MP were increased in proportion to the apparent densities. The compressive strength of the GFm produced from MP with 35.93% of F/C (%) showed maximum value in 2.93 ± 0.06 MPa, which was increased up to 27.95% than that of the GFm prepared from un-fluorinated MP. This result was attributed that the interface bonding between of MPs due to fluorine functional groups with high surface energy helped to improve compressive strength of the GFm.
[References]
  1. Inagaki M, Qiu J, Guo Q, Carbon, 87, 128, 2015
  2. Klett J, Hardy R, Romine E, Walls C, Burchell T, Carbon, 38(7), 953, 2000
  3. Kim JH, Jeong E, Lee YS, J. Ind. Eng. Chem., 32, 21, 2015
  4. Lee S, Kim JH, Jeong E, Lee YS, Korean Chem. Eng. Res., 54(2), 268, 2016
  5. Jafari AJ, Kakavandi B, Kalantary RR, Gharibi H, Asadi A, Azari A, Babaei AA, Takdastan A, Korean J. Chem. Eng., 33(10), 2878, 2016
  6. Delabarre C, Guerin K, Dubois M, Giraudet J, Fawal Z, Hamwi A, J. Fluor. Chem., 126(7), 1078, 2005
  7. Zhang J, Shi J, Wu G, Guo X, Guo Q, Liu L, Carbon, 49(5), 1628, 2011
  8. Fujimoto H, Yoshikawa M, Mabuchi A, Maeda T, J. Fluor. Chem., 57(1-3), 65, 1992
  9. Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y, Carbon, 38(2), 305, 2000
  10. Li S, Guo Q, Song Y, Shi J, Liu L, Carbon, 48(4), 1312, 2010
  11. Kim DW, Kim JS, Korean Chem. Eng. Res., 53(6), 703, 2015
  12. Fischer L, Siemann U, Ruland W, Colloid Polym. Sci., 261(9), 744, 1983
  13. Lee YS, Rho JS, Prospect. Ind. Chem., 6(2), 33, 2003
  14. Li X, Basso MC, Braghiroli FL, Fierro V, Pizzi A, Celzard A, Carbon, 50(5), 2026, 2012
  15. Munoz E, Ruiz-Gonzalez ML, Seral-Ascaso A, Sanjuan ML, Gonzalez-Calbet JM, Laguna M, de la Fuente GF, Carbon, 48(6), 1807, 2010
  16. Sanchez-Coronado J, Chung DDL, Carbon, 41(6), 1175, 2003
  17. Straatman AG, Gallego NC, Thompson BE, Hangan H, Int. J. Heat Mass Transf., 49(11-12), 1991, 2006
  18. Kim JH, Lee S, Jeong E, Lee YS, Appl. Chem. Eng., 26(6), 706, 2015
  19. Pandey PK, Smitha P, Gajbhiye NS, J. Polym. Res., 15(5), 397, 2008
  20. Karthik M, Faik A, Doppiu S, Roddatis V, Aguanno BD, Carbon, 87, 434, 2015
  21. Hou C, Zhang Q, Li Y, Wang H, Carbon, 50(5), 1959, 2012
  22. Kim JH, Lee YS, J. Ind. Eng. Chem., 30, 127, 2015
  23. Lee SE, Kim D, Lee MY, Lee MK, Jeong E, Lee YS, Polym. Korea, 39(1), 114, 2015
  24. Park MS, Kim KH, Kim MJ, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 490, 104, 2016
  25. Yoo BR, Park IJ, Jo SM, Hong HY, Polym. Sci. Technol., 21, 416, 2010
  26. Kim JH, Bae TS, Lee YS, Polym. Korea, 39(6), 925, 2015
  27. Kim JH, Kim DY, Jeong E, Lee YS, Appl. Surf. Sci., 360, 1009, 2016
  28. Lee S, Lee BJ, Trans. KIEE., 62(6), 782, 2013