Issue
Korean Chemical Engineering Research,
Vol.54, No.6, 753-761, 2016
Optimization and Evaluation of Organic Acid Recovery from Kraft Black Liquor Using Liquid-Liquid Extraction
Liquid-liquid extraction (LLE) can be used for the recovery of acetic acid from black liquor prior to bioethanol fermentation. Recovery of value-added chemicals such as acetic-, formic- and lactic acid using LLE from Kraft black liquor was studied. Acetic acid and formic acid have been reported to be strong inhibitors in fermentation. The study elucidates the effect of three reaction parameters: pH (0.5~3.5), temperature (25~65 °C), and reaction time (24~48 min). Extraction performance using tri-n-octylphosphine oxide as the extractant was evaluated. The maximum acetic acid concentration achieved from hydrolyzates was 69.87% at 25°C, pH= 0.5, and 36 min. Factorial design was used to study the effects of pH, temperature, and reaction time on the maximum inhibitor extraction yield after LLE. The maximum potential extraction yield of acetic acid was 70.4% at 25.8°C, pH=0.6 and 37.2 min residence time.
[References]
  1. Luoma P, Vanhanen J, Tommila P, Distributed Bio-Based Economy: Driving Growth, SITRA: Helsinki, Finland (2011).
  2. Aresta M, Dibenedetto A, Dumeignil F, Green Process Synth, 2, 87, 2013
  3. Um BH, Hanley TR, Korean J. Chem. Eng., 25(5), 1094, 2008
  4. Zhang YHP, J. Ind. Microbiol. Biotechnol., 35, 367, 2008
  5. Himmel ME, Biomass Recalcitrance. Deconstructing the Plant Cell Wall for Bioenergy. Blackwell, Oxford (2008).
  6. Rodrigues JAR, Quim. Nova, 34, 1242, 2011
  7. Dewulf J, Van Langenhoven H, Renewables-Based Technology. Sustainability Assessment. John Wiley & Sons, Chichester(2006).
  8. Um BH, Bae SH, Korean J. Chem. Eng., 28(5), 1172, 2011
  9. Xu J, Cheng JJ, Sharma-Shivappa RR, Burns JC, Energy Fuels, 24(3), 2113, 2010
  10. Fengcl D, Wegener G, Wood - Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin (1989).
  11. Klinke HB, Thomsen AB, Ahring BK, Appl. Microbiol. Biotechnol., 66(1), 10, 2004
  12. Anasthas HM, Gaikar VG, Sep. Sci. Technol., 36(12), 2623, 2001
  13. Wasewar KL, Yawalkar AA, Moulijn JA, Pangarkar VG, Ind. Eng. Chem. Res., 43(19), 5969, 2004
  14. Um BH, Friedman B, van Walsum GP, Holzforschung., 65, 51, 2011
  15. Rickcr NL, Michaels JN, King CL, J. Sep. Proc. Technol., 1, 36, 1979
  16. Senol A, Chem. Eng. Jpn., 32, 717, 1999
  17. Sabolova E, Schlosser S, Martak J, J. Chem. Eng. Data, 46, 735, 2001
  18. Heisel RW, Chem. Eng. Prog., 73, 55, 1977
  19. Niitsu M, Sekine T, Bull. Chem. Soc. Jpn., 51, 705, 1978
  20. Wardell JM, King CJ, J. Chem. Eng. Data, 23, 144, 1978
  21. Hano T, Matsumoto M, Ohtake T, Sasaki K, Kawano Y, J. Chem. Eng. Jpn., 23, 260, 1990
  22. Reisinger H, King CJ, Ind. Eng. Chem. Res., 34(3), 845, 1995
  23. Juang RS, Wu RT, Sep. Purif. Technol., 17(3), 225, 1999
  24. Al-Mudhaf HF, Hegazi MF, Abu-Shady AI, Sep. Purif. Technol., 27(1), 41, 2002
  25. Wisniewski M, Pierzchalska M, J. Chem. Technol. Biotechnol., 80(12), 1425, 2005
  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. In: Laboratory Analytical Procedure (LAP), NREL/TP-510-42623, National Renewable Energy Laboratory, Golden, CO, USA (2006).
  27. Du BW, Sharma LN, Becker C, Chen SF, Mowery RA, van Walsum GP, Chambliss CK, Biotechnol. Bioeng., 107(3), 430, 2010
  28. Chen WH, Pen BL, Yu CT, Hwang WS, Bioresour. Technol., 102(3), 2916, 2011
  29. Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA, Bioresour. Technol., 98(10), 2034, 2007
  30. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO, Enzyme Microb. Technol., 24(3-4), 151, 1999
  31. Hsu TC, Guo GL, Chen WH, Hwang WS, Bioresour. Technol., 101(13), 4907, 2010
  32. Panagiotopoulos IA, Lignos GD, Bakker RR, Koukios EG, J. Clean Prod., 32, 45, 2012