Issue
Korean Chemical Engineering Research,
Vol.54, No.4, 501-509, 2016
석유코크스/석탄 혼합 가스화를 이용하는 액화 공정의 경제성 평가
Economic Assessment of a Indirect Liquefaction Process using a Gasification with Petroleum Coke/Coal Mixtures
황함유량이 높아 독성 폐기물로서 분류되는 석유코크스를 역청탄 및 아역청탄과 혼합하여 가스화 공정을 통해 액체연료를 생산하는 공정의 경제성을 분석하였다. 공정의 경제성을 분석하기 위한 2,000 톤/일 규모의 액화 공정은 가스화, 정제, Fischer-Tropsch 전환 등으로 이루어진다. 기발표된 자료들로부터 적절한 검토 기준을 통해 건설비용 및 매출액을 산정하였고 석유코크스/석탄의 혼합비에 따른 경제성을 평가하였다. 경제성 평가 결과, 원소황의 생산과 판매증가로 인해서 석유코크스의 경제성이 석탄보다 우수했으며 수분 함량이 낮은 역청탄과의 혼합이 보다 높은 경제성을 가지는 것으로 나타났다. 아역청탄의 경우, IRR (Internal rate of return)이 10% 이상이 되기 위해서는 석유코크스와의 혼합이 적어도 40 wt% 이상이 되어야 함을 확인하였다.
The economic feasibility of a commercial indirect liquefaction process with the co-gasification process of petroleum coke which has been recognized as hazardous waste because of high sulfur content and bituminous coal and sub-bituminous coal mixtures was assessed. The 2,000 ton/day scale indirect liquefaction process including co-gasification, clean up, Fischer-Tropsch conversion and so on was assumed and used to analyze economical efficiencies with various conditions. Financial data from previous studies were modified and used and economical sensitivities with various mixture ratios were evaluated in this study. As a result, economic values of petroleum coke were superior than those of coals because of increasing sulfur sale. Also, mixtures with petroleum coke and bituminous coal was more favorable that those with petroleum coke and sub-bituminous coal due to lower moisture content. In case of sub-bituminous coal, the mixture ratio with petroleum coke had to be over 40wt% for the IRR of mixture to surpass 10%.
[References]
  1. Higman C, “State of the Gasification Industry: Worldwide Gasification Database 2014 Update,” Gasification Technology Conference, October, Washington, DC, USA(2014).
  2. Park SH, Chung SW, Lee SK, Choi HK, Lee SH, Appl. Therm. Eng., 89, 843, 2015
  3. Kook JW, Shin JH, Gwak IS, Lee SH, Appl. Chem. Eng., 26(2), 184, 2015
  4. Ra HW, Lee SH, Yoon SJ, Choi YC, Kim JH, Lee JG, Korean Chem. Eng. Res., 48(2), 129, 2010
  5. Kim S, J. economic research, 13, 149, 2008
  6. Lee SH, Yoon SJ, Choi YC, Kim JH, Lee JG, Korean Chem. Eng. Res., 44(6), 631, 2006
  7. Lee SH, Choi KB, Lee JG, Kim JH, Korean J. Chem. Eng., 23(4), 576, 2006
  8. Holt NAH, “Coal Gasification Research, Development and Demonstration-needs and Opportunities,” Gasification Technologies, October, San Francisco(2001).
  9. Mantripragada HC, Rubin ES, Fuel, 103, 805, 2013
  10. Seo MW, Kim SD, Na JG, Lee SH, Korean Chem. Eng. Res., 47(6), 734, 2009
  11. Yoon SJ, Choi YC, Lee SH, Lee JG, Korean J. Chem. Eng., 24(3), 512, 2007
  12. Yoon SJ, Choi YC, Hong JC, Ra HW, Lee JG, Korean Chem. Eng. Res., 46(3), 561, 2008
  13. Yoon SJ, Choi YC, Lee JG, Korean J. Chem. Eng., 26(5), 1259, 2009
  14. Lee SH, Yoon SJ, Ra HW, Il Son Y, Hong JC, Lee JG, Energy, 35(8), 3239, 2010
  15. Park JW, Bae JS, Kweon YJ, Kim HJ, Jung H, Han C, Korean Chem. Eng. Res., 47(6), 781, 2009
  16. Bibber LV, Shuster, Erik, Haslbeck J, Rutkowski M, Olson S, Kramer S, “Technical and Economic Assessment of Small-scale Fischer-tropsch Liquids Facilities,” DOE/NETL-2007/1253, National Energy Technology Laboratory, USA(2007).
  17. Gong S, Zhu X, Kim Y, Song B, Yang W, Moon W, Byoun Y, Korean Chem. Eng. Res., 48(1), 80, 2010
  18. Hernandez JJ, Aranda-Almansa G, Serrano C, Energy Fuels, 24(4), 2479, 2010
  19. Fermoso J, Arias B, Plaza MG, Pevida C, Rubiera F, Pis JJ, Garcia-Penam F, Casero P, Fuel Process. Technol., 90(7), 926, 2009
  20. Phillips S, Aden A, Jechura J, Dayton D, “Thermochemical Ethanol Via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass,” NREL/TP-510-41168, National Renewable Energy Laboratory, USA(2007).
  21. NETL, “Capital Cost Scaling Methodology,” DOE/NETL-341/013113, National Energy Technology Laboratory, USA(2013).
  22. Lee JM, Kim DW, Kim JS, Kim JJ, Kim HS, Korean Chem. Eng. Res., 44(5), 489, 2006
  23. http://www.kcoal.or.kr/info/info05.php.
  24. http://www.platts.com/market-data.