Issue
Korean Chemical Engineering Research,
Vol.54, No.4, 487-493, 2016
양이온교환 고성능액체크로마토그래피에서 라이소자임의 모멘트 분석
Moment Analysis (MA) of Lysozyme in Cation Exchange High Performance Liquid Chromatography (HPLC)
양이온교환 고성능액체크로마토그래피에서 라이소자임을 분석하고, 실험결과인 크로마토그램을 통해 모멘트 분석을 수행하였다. 용리 인산완충용액은 1.0, 0.75, 0.5 M의 소금을 포함하였다. 실험변수는 유량, 용리 완충용액중 소금 농도, 시료의 농도로 하였다. General rate (GR) model을 도입하여 1차와 2차 모멘트를 해석하였다. 1차 모멘트 해석에서 평형상수 K를 구할 수 있으며, 이는 L/u0 vs. (μ1-t0)/(1-εe)(1-εi)]를 도식화했을 때의 기울기이다. 2차 모멘트 해석에서 입자내 확산계수는 이론단수 실험자료에서 계산하였다. 모멘트 분석결과를 통해 여러 물질전달 현상이 이론단 상당높이(HETP)에 주는 영향을 알아보기 위해 van Deemter plot을 작성하고, 총괄 이론단 상당높이(Htotal)에 기여하는 Hax, Hf, 그리고 Hd를 조사하였다. 그 중 입자내 확산계수를 나타내는 Hd가 가장 지배적이었고, 외부 물질전달 계수를 나타내는 Hf의 영향이 가장 미미했다.
The moment analysis of lysozyme was implemented using chromatograms that were obtained from weak cation exchange column in high performance liquid chromatography system. Three elution sodium phosphate buffers containing 1.0, 0.75, 0.5M sodium chloride were used. Experiments were conducted by varying flow rate, elution sodium chloride concentration, and lysozyme solute concentration. The general rate (GR) model was employed to calculate the first moment and the second moment. By plotting L/u0 vs. (μ1-t0)/(1-εe)(1-εi)] equilibrium constants (K) were obtained from first moment analysis. Intra-particle diffusivity was obtained from theoretical plate number data. Based on the results of moment analysis, van Deemter plots were drawn in order to investigate the contributions of Hax, Hf, and Hd to total Height Equivalent to a Theoretical Plate (HETP, Htotal). The effect of intra-particle diffusion (Hd) was the most dominant factor contributing to HETP while external mass transfer (Hf) was negligible factor.
[References]
  1. Otto G, Anal. Chem., 43(14), 1934, 1971
  2. Miyabe K, J. Sep. Sci., 32, 757, 2009
  3. Kim HM, Kim AR, Lee CS, Kim IH, Korean Chem. Eng. Res., 50(4), 713, 2012
  4. Ko KY, Kim IH, Korean Chem. Eng. Res., 52(1), 98, 2014
  5. Miyabe K, Suzuki M, AIChE J., 38, 901, 1992
  6. Suzuki M, Adsorption engineering, Kodansha, Elsevier, Tokyo, Japan(1990).
  7. Liu Z, Roininen J, Pulkkinen I, Saari P, Sainio T, Alopaeus V, Comput. Chem. Eng., 55, 50, 2013
  8. Choi DY, Row KH, J. Ind. Eng. Chem., 10(6), 1052, 2004
  9. http://www.sanderkok.com/techniques/hplc/column_properties.html.
  10. Kestin J, Khalifa HE, Correia RJ, J. Phys. Chem. Ref Data, 10(1), 71, 1981