Issue
Korean Chemical Engineering Research,
Vol.54, No.4, 443-447, 2016
열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발
Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment
미세조류 세포벽은 셀룰로오스가 주요 구성성분으로 리그닌을 포함하지 않아 낮은 온도의 전처리 조건에서도 효과적으로 셀룰로오스와 헤미셀룰로오스 분해가 가능하다. 차세대 바이오매스로 주목 받는 미세조류(Tetraselmis KCTC 12236BP)로부터 120 ℃ 이하의 낮은 온도 조건에서 열수전처리를 이용한 발효당 생산 증대를 위해 공정조건을 최적화하였다. 주요 공정조건인 추출온도, 황산농도와 추출시간에 따른 당화율 변화를 확인하였을 때, 온도와 황산농도가 글루코오스 생산에 큰 영향을 컸으며 당화율이 비례하여 증가하는 경향을 보였다. 경제성을 고려한 열수전처리 최적조건은 120 ℃, 2 mol 황산, 40분으로 95.9%의 당화율을 얻을 수 있었다. 탈지미세조류의 황산 열수전처리와 효소당화를 비교했을 때, 황산 열수전처리의 당화율이 2.1배 이상 높고 전처리 시간이 짧아 황산 열수전처리가 효소당화에 비해 효과적인 공정임을 확인하였다.
The microalgae have cellulose as a main structural component of their cell wall and the lignin content in microalgae is much lower than other lignocellulosic biomass. Therefore, fermentable sugar production from microalgae (Tetraselmis KCTC 12236BP) can be carried out under pretreatment without high temperature and high pressure. It was investigated that the effect of hot-water pretreatment using sulfuric acid for lipid extracted algae which is expected to be a next generation biomass. The effects of three major variables including extraction temperature, acid concentration and time on the enzymatic hydrolysis were investigated. Among the tested variables, temperature and acid concentration showed significant effects and optimum pretreatment conditions for the economic operation criteria were obtained as follows: reaction temperature of 120 ℃, sulfuric acid concentration of 2 mol and pretreatment time of 40 min. Under the optimum conditions of acidic hot water pretreatment, experimentally obtained hydrolysis yield were 95.9% which showed about 2.1 fold higher compared with enzymatic hydrolysis process. Therefore, acid pretreatment under mild condition was proven to be an effective method for fermentable sugar production from lipid extracted microalgae.
[References]
  1. Mclaren JS, Trends Biotechnol., 23, 339, 2005
  2. Shin HJ, Park JH, Jung WK, Cho H, Kim SW, J. Korean Soc. Precision Eng., 28, 154, 2011
  3. Kloareg B, Quatrano RS, Oceanogr. Mar. Biol. Annu. Rev., 26, 259, 1988
  4. Yun YM, Jung KW, Kim DH, Oh YK, Shin HS, J. Org. Resour. Recycle Assoc., 20, 78, 2012
  5. National Renewable Energy Laboratory, “Standard Biomass Analytical Procedures,” http://www.nrel.gov/biomass/analytical procedures_html.
  6. Shrestha R, Hur O, Kim TH, Korean Chem. Eng. Res., 51(3), 335, 2013
  7. Ahn SJ, Cayetano RD, Kim TH, Kim JS, Korean Chem. Eng. Res., 53(1), 1, 2015
  8. Cayetano RD, Kim TH, Um BH, Korean Chem. Eng. Res., 52(1), 45, 2014
  9. Lee SB, Jung SK, Lee JD, Appl. Chem. Eng., 21(3), 349, 2010
  10. Andric P, Meyer AS, Jensen PA, Dam-Johansen K, Biotechnol. Adv., 28, 407, 2010
  11. Carvalheiro F, Duarte LC, Girio FM, J. Sci. Ind. Res., 67, 849, 2008
  12. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673, 2005
  13. Liu CG, Wyman CE, Bioresour. Technol., 96(18), 1978, 2005