Issue
Korean Chemical Engineering Research,
Vol.54, No.3, 431-435, 2016
NaOH를 이용한 우드칩의 당화 전처리에 대한 감마선 조사 영향 연구
Effect of Gamma Irradiation on Wood Chip Saccharification Pretreated with NaOH
본 논문에서는 감마선 조사가 NaOH 전처리를 이용한 우드칩의 당화에 미치는 영향을 살펴보았다. 당화량은 전처리된 우드칩에 효소를 이용하여 가수분해한 후 생성된 환원당과 포도당 양을 측정하여 확인하였다. 10 g/L NaOH 처리한 우드칩을 각각 50, 100, 200 kGy 세기의 감마선을 조사하여 당화량을 측정하였다. 우드칩의 가수분해 수율을 비교했을 때, 200 kGy 감마선 조사한 우드칩에서 가장 높은 환원당 함량 12.2 g/L이 얻어졌다. 또한 전처리 과정에서의 감마선 조사 단계의 영향을 평가하기 위하여 우드칩을 먼저 50, 100, 200 kGy 감마선 조사한 후, 10 g/L NaOH 로 전처리하였다. 200 kGy 감마선 조사 후 NaOH 전처리를 수행했을 때 환원당 함량은 13.4 g/L로 전처리 이후의 감마선 조사구보다 증가하였고, 7.9 g/L 포도당을 얻을 수 있었다. 이러한 결과로부터 감마선 조사가 셀루로오즈 바이오매스 전처리에 활용 가능할 것으로 기대된다.
The aim of this study was to investigate the effect of gamma irradiation on the pretreatment of wood chips with NaOH solution. The degree of saccharification was quantified by measuring reducing sugar and glucose concentrations after enzymatic hydrolysis. After pretreatment with 10 g/L NaOH, the wood chips were irradiated at the doses of 0, 50, 100, and 200 kGy, respectively. Among the irradiated samples, wood chips irradiated at the dose of 200 kGy had the highest reducing sugar concentration of 12.2 g/L. Also, to define the effect of irradiation before pretreatment, the wood chips were first gammairradiated and then pretreated with NaOH. When the NaOH treatment was conducted after irradiation at 200 kGy, the reducing sugar content was further increased to 13.4 g/L and glucose content of the wood chip was as high as 7.9 g/L. These results suggest that gamma irradiation may be the promising method for pretreatment of cellulose biomass.
[References]
  1. Zhang LL, Chen L, Wang JF, Chen Y, Gao X, Zhang ZH, Liu TZ, Bioresour. Technol., 181, 136, 2015
  2. Ryu JS, Kim KS, Park SJ, Appl. Chem. Eng., 22(3), 296, 2011
  3. McKendry P, Bioresour. Technol., 83(1), 37, 2002
  4. McKendry P, Bioresour. Technol., 83(1), 47, 2002
  5. Fortier J, Truax B, Gagnon D, Lambert F, J. Environ. Manage., 154, 333, 2015
  6. Hoekman SK, Renew. Energy, 34(1), 14, 2009
  7. Liu S, Appl. Energy, 144, 144, 2015
  8. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673, 2005
  9. Toscano G, Duca D, Rossini G, Mengarelli C, Pizzi A, Energy, 83, 351, 2015
  10. Gregg D, Saddler JN, Appl. Biochem. Biotechnol., 57-58, 711, 1996
  11. Si SL, Chen Y, Fan CF, Hu HZ, Li Y, Huang JF, Liao HF, Hao B, Li Q, Peng LC, Tu YY, Bioresour. Technol., 183, 248, 2015
  12. Hendriks ATWM, Zeeman G, Bioresour. Technol., 100(1), 10, 2009
  13. Zheng Y, Pan ZL, Zhang RH, Wang DH, Appl. Energy, 86(11), 2459, 2009
  14. MacDonald DG, Bakhshi NN, Mathews JF, Roychowdhury A, Bajpai P, Moo-Young M, Biotechnol. Bioeng., 25(8), 2067, 1983
  15. Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L, Biotechnol. Biofuels, 5(1), 58, 2012
  16. Sen M, Toprak D, Guven O, Carbohydr. Polym., 114, 546, 2014
  17. Lee IS, Korean Ind. Chem. News, 16(2), 38, 2013
  18. Choi JI, Korean Chem. Eng. Res., 51(6), 780, 2013
  19. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A, Bioresour. Technol., 101(13), 4767, 2010
  20. Lee JY, Lee BM, Jeun JP, Kang PH, Korean Chem. Eng. Res., 52(1), 113, 2014
  21. Xin LZ, Kumakura M, Bioresour. Technol., 43(1), 13, 1993
  22. Bernfeld P, Methods Enzymol., 1, 149, 1955
  23. Hinman ND, Wright JD, Hogland W, Wyman CE, Appl. Biochem. Biotechnol., 20(1), 391, 1989
  24. Zhao L, Zhang X, Tan TW, Biomass Bioenerg., 32(12), 1156, 2008
  25. Zhang YHP, Lynd LR, Biotechnol. Bioeng., 88(7), 797, 2004