Issue
HWAHAK KONGHAK,
Vol.38, No.5, 760-766, 2000
Mg(OH)2를 이용한 습식배연탈황공정에서 흡수탑의 특성
Characteristics of Gas-Liquid Contactors in Wet Flue Gas Desulfurization Process Using Mg(OH)2
수산화마그네슘을 이용하여 산업체의 보일러에서 발생하는 연소가스를 처리하는 배연탈황공정을 개발하기 위하여 bench 규모의 실험장치를 이용하여 여러 형태의 흡수탑의 특성과 성능에 관한 실험을 수행하였다. 흡수탑의 종류에 따라 기상물질전달계수(kGa) 값을 기상 Reynolds number 21,000-33,000과 액상 Reynolds number 950-2,400 범위에서 경험적 상관관계식을 얻었다. Dual Flow Tray(DFT)를 설치한 흡수탑에서 SO3 농도가 0.2-0.3 wt% 정도로 낮은 경우에는 L/G ratio의 변화에 따라 SO2 제거효율이 크게 변화함을 보여 주지만, SO3 농도가 0.7 wt% 이상인 조건에서는 L/G ratio나 SO3 농도가 증가하여도 별 영향을 받지 않았다. DFT의 hole 상부에 일정한 각도의 plate가 붙어 있는 Cycloid Dual Flow Tray(CDFT)는 DFT에 비해 성능이 다소 높지만 각도에 따라 흡수탑내의 압력차의 변화가 컸다. CDFT#3, CDFT#4를 이용한 경우에 비교적 낮은 압력을 유지하면서도 SO2 제거효율이 95% 정도를 유지할 수 있었다.
To develope the flue gas desulfurization process using magnesium hydroxide, which is used in industries to treat the flue gas from boilers, the performance of different types of gas-liquid contactors was experimentally investigated using a bench scale system. Emperical correlations for the gas phase mass transfer coefficient(kGa) was determined at gas-phase Reynolds numbers from 21000 to 33000 and liquid-phase Reynolds numbers from 950 to 2400. SO2 removal efficiency obtained at the Dual Flow Tray(DFT) was varied by L/G ratio when SO3 concentration was 0.2-0.3 wt%, but was not affected by L/G ratio and SO3 concentration when SO3 concentration was more than 0.7 wt%. Not only was the performance of Cycloid Dual Flow Tray(CDFT) which has an inclined plate above each plate hole higher than DFT but the pressure drop was larger. 95% SO2 removal efficiency was obtained using CDFT#3, CDFT#4 with a mild pressure drop.
[References]
  1. The Revision Drafts for Air Pollution Emission Standards, Air Quality Management Bureau, Ministry of Environment, 1999
  2. Wojozewicz WC, Singer RK, Tsirigotis PE, "Status of SO2 Scrubbing Technologies," presented at EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, Atlanta, GA, 1, 1999
  3. Fan LS, "Absorption of Sulfur-dioxide in Spray Column and Turbulent Contacting Absorbers," Doctoral Dissertation, Univ. of West Virginia, 1975
  4. Ikeno H, Tamaru T, Abe T, IHI Eng. Rev., 24(1), 1, 1991
  5. "Technical Information of Mitsubishi Flue Gas Desulfurization System (Magnesium Hydroxide Process)," Brochure from Mitsubishi Heavy Industries, 1998
  6. Nielsen CHE, Kill S, Thomsen HW, Dam-Johansen K, Chem. Eng. Sci., 53(3), 495, 1998
  7. Lee HK, Cho HD, Park YS, Choi BM, Kim IW, Theor. Appl. Chem. Eng., 5, 3457, 1999
  8. Lee HK, in Proc. 4th Symposium of Environmental Technology, The Korean Society of Industrial and Engineering Chemistry, Seoul, Korea, 2000
  9. Lee HK, Choi WK, Cho HD, Kim JK, Lee JS, Yoon HS, "Development of High Efficiency Flue Gas Desulfurizatin Process Using Mg(OH)2," Annual Report, KIER-993604, 1999