Issue
Korean Chemical Engineering Research,
Vol.54, No.1, 140-144, 2016
반응표면분석법을 통한 Arthrobacter sp.의 amylase 생산 최적화
Optimization of Physical Factor for amylase Production by Arthrobacter sp. by Response Surface Methodology
본 연구에서는 극지 연구소로부터 분양 받은 Arthrobacter sp. PAMC 27388 균주에서 생산되는 아밀라아제(amylase)를 물리적 요인(physical factor)들의 변화를 통하여 생산배지 최적화를 수행하였다. 한천 배지 상에서 lugol solution을 이용한 클린환의 확인을 통하여 아밀라아제가 생산됨을 확인하였으며, 16S rDNA를 이용하여 동정한 결과 Arthrobacter sp. 임을 확인할 수 있었다. 최적화 이전의 아밀라아제 생산량은 1.66 mU/L로 확인되었다. 최적화 결과, 2.49 mL의 접종부피, pH 6.85, 42.87 mL의 배지 부피의 조건에서 가장 많은 양의 아밀라아제가 생산될 것으로 예상되었으며, 생산량은 2.84 mU/L로 예상되었다. 확인 실험을 통하여 최적화 이전과 비교하여 생산량이 약 150% 증가한 2.50 mU/L의 아밀라아제가 생산됨을 확인할 수 있었다.
In this study, the physical factors for amylase production by Arthrobacter sp. were optimized using response surface methodology(RSM). Antarctic microorganism Arthrobacter sp. PAMC 27388 was obtained from the Polar and Alpine Microbial Collection(PAMC) at the Korea Polar Research Institute. This microorganism was confirmed for the excretion of amylase with Lugol`s solution. The amylase activity was after flask culture was as low as 1.66 mU/L before optimization. The physical factors including the inoculum volume, the initial culture pH, and the medium volume were chosen to be optimized for the enhanced amylase production. The calculated results using RSM indicate that the optimal physical factors were 2.49 mL inoculum volume, 6.85 pH and 42.87 mL medium volume with a predicted amylase production of 2.84 mU/L. The experimentally obtained amylase activity was 2.50 mU/L, which was a 150% increase compared to the level before optimization.
[References]
  1. Dastager SG, Dayanand A, Li WJ, Kim CJ, Lee JC, Park DJ, Tian XP, Raziuddin QS, Curr. Microbiol., 57(6), 638, 2008
  2. Gomes J, Steiner W, Food Technol. Biotechnol., 42, 223, 2004
  3. Feller G, Gerday C, Nat. Rev. Microbiol., 1, 200, 2003
  4. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR, Curr. Opin. Biotechnol., 13, 253, 2002
  5. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G, Trends Biotechnol., 18, 103, 2000
  6. Huston AL, “Biotechnological Aspects of Cold-adapted Enzymes,” In Psychrophiles: from Biodiversity to Biotechnology, Springer. Berlin. Heidelberg, pp. 347-363(2008).
  7. Peng Y, Yang XJ, Zhang YZ, Appl. Microbiol. Biotechnol., 69(2), 126, 2005
  8. Anto H, Trivedi U, Patel K, Food Technol. Biotechnol., 44, 241, 2006
  9. Irfan M, Nadeem M, Syed Q, J. Cell. Molecular Biology, 10, 55, 2012
  10. Pandey A, Nigam P, Soccol CRVT, Soccol V, Singh D, Mohan R, Biotechnol. Appl. Biochem., 31, 135, 2000
  11. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B, Process Biochem., 38, 1599, 2003
  12. Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G, Process Biochem., 38, 1397, 2003
  13. Haki GD, Rakshit SK, Bioresour. Technol., 89(1), 17, 2003
  14. Tonkova A, Microbial Biotechnology in Horticulture, 1, 421, 2006
  15. Puri S, Beg QK, Gupta R, Curr. Microbiol., 44(4), 286, 2002
  16. Adinarayana K, Ellaiah P, J. Pharm. Sci., 5, 272, 2002
  17. Hanlon GW, Hodges NA, Russell AD, J. Gene. Microbiol., 128, 845, 1982
  18. Lane DJ, “16S-23S rRNA Sequencing,” In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics, Wiley, New York, pp. 115-175(1991).
  19. Sumner JB, Howell SF, J. Biol. Chem., 108, 51, 1935
  20. Zhong G, Wang Y, Xu C, Wei D, Yang X, China Brewing, 9, 019, 2011
  21. Tanyildizi MS, Elibol M, Ozer D, J. Chem. Technol. Biotechnol., 81(4), 618, 2006
  22. Stergiou PY, Foukis A, Theodorou L, Papagianni M, Papamichael E, Br. Archives Biol.Technol., 57, 421, 2014
  23. Sivakumar K, Karuppiah V, Sethubathi GV, Thangaradjou T, Kannan L, Biologia, 67, 32, 2012
  24. Venil CK, Lakshmanaperumalsamy P, Pakistan J. Sci. Ind. Res., 51, 333, 2008
  25. Kim HD, Yun CW, Choi JI, Han SJ, Korean Chem. Eng. Res., 53(4), 524, 2015
  26. Kim H, Choi J, Han SJ, Korean Chem. Eng. Res., 52(6), 834, 2014