Issue
Korean Chemical Engineering Research,
Vol.54, No.1, 44-51, 2016
반응표면분석법을 이용한 전도성물질의 절연코팅 프로세스의 최적화
Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology
전도성 물질인 철 입자(iron particles)를 절연체로 코팅하여 제작한 압분자심(powder core)은 비저항이 작기 때문에 고주파 영역에서 와전류 손실이 크다. 이 결함을 해결하기 위해서는 압분자심의 비저항을 증가시킬 필요가 있다. 이 연구에서는 압분자심의 비저항을 증가시키기 위하여 유성볼밀을 사용하여 전기전도성 철 입자에 산화제2구리를 코팅하였다. 반응표면분석법을 사용하여 코팅변수를 최적화하였다. 최적화 시 인자는 CuO 질량분율, 밀 회전 수, 코팅시간, 볼 크기, 볼 질량, 시료 질량이며, 반응변수는 비저항이었다. 6인자-일부요인배치법에 의하면 주된 인자는 CuO 질량분율, 밀 회전 수, 코팅시간이었다. 3-인자 완전요인배치법과 최대경사법을 사용하여 3개 인자의 수준을 선정하였다. 최대경사법을 사용하여 최고의 비저항을 갖는 영역에 접근하였다. 최종적으로 Box-Behnken법을 사용하여 스크린한 인자들의 반응표면을 분석하였다. Box-Behnken법 결과에 의하면 CuO 질량분율과 밀 회전 수가 코팅공정 효율에 영향을 주는 주요 인자이었다. CuO 질량분율이 증가함에 따라 비저항은 증가하였다. 그에 반해서 밀 회전 수가 감소함에 따라 비저항은 증가하였다. 코팅공정을 최적화한 모델로부터 계산한 예측값과 실험값과는 통계적으로 유의하게 일치하였다(Adj-R2=0.944). 비저항의 최고값을 갖는 코팅조건은 CuO 질량분율은 0.4, 밀 회전 수는 200 rpm, 코팅시간은 15분이었다. 이 조건에서 코팅한 정제의 비저항 측정값은 530 kΩ·cm이었다.
The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.
[References]
  1. Tajima S, Hattori T, Kondoh M, Kishimoto H, Sugiyama M, Kitto T, J. Jpn. Soc. Powder Metallurgy, 52(3), 164, 2005
  2. Chen SF, Chang HY, Wang SJ, Chen SH, Chen CC, J. Alloy. Compd., 637, 30, 2015
  3. Sunday KJ, Darling KA, Hanejko FG, Anasori B, J. Alloy. Compd., 653, 61, 2015
  4. Taghvaei AH, Ebrahimi A, Ghaffari M, Janghorban K, J. Magn. Magn. Mater., 323, 150, 2011
  5. Gramatyka P, Kolano-Burian A, Kolano R, Polak M, J. Achieve. Mater. Manuf. Eng., 18, 2006
  6. Banerjee S, Hemraj-Benny T, Wong SS, Adv. Mater., 17(1), 17, 2005
  7. Taghvaei AH, Shokrollahi H, Ghaffari M, Janghorban K, J. Phys. Chem. Solids, 71, 7, 2010
  8. Hemmati I, Hosseini HRM, Kianvash A, J. Magn. Magn. Mater., 305, 147, 2006
  9. Streckova M, Fuzer J, Medvecky L, Bures R, Kollar P, Faberova M, Girman V, Bull. Mat. Sci., 37, 167, 2014
  10. Liu W, Zhong W, Jiang H, Tang N, Wu X, Du Y, Surf. Coat. Technol., 200, 5170, 2006
  11. Streckova M, Medvecky L, Fuzer J, Kollar P, Bures R, Faberova M, Mater. Lett., 101, 37, 2013
  12. Yaghtin M, Taghvaei AH, Hashemi B, Jangborban K, J. Alloy. Compd., 581, 293, 2013
  13. Streckova M, Bures R, Faberova M, Medvecky L, Fuzer J, Kollar P, Chin. J. Chem. Eng., 23, 736, 2015
  14. Fujimoto T, Yamauchi J, Yamanaka S, Kuka Y, J. Soc. Powder Technol. Jpn., 50, 398, 2013
  15. Taghvaei AH, Ebrahimi A, Ghaffari M, Janghorban K, J. Magn. Magn. Mater., 322, 3748, 2010
  16. Brunckova H, Kabatova M, Dudrova E, Surf. Interface Anal., 42, 13, 2010
  17. Jay F, Gauthier V, Dubois S, J. Am. Ceram. Soc., 89(11), 3522, 2006
  18. Asao K, Yoshioka Y, Watano S, J. Soc. Powder Technol. Jpn., 49, 521, 2012
  19. Sim CH, Food Eng. Prog., 15(2), 97, 2011
  20. Kim DS, Park YS, J. Korean Soc. Water Qual., 26(1), 35, 2010
  21. Lee SH, Data Analysis of Engineering Statistics Using Minitab, revision, Iretec Inc., Kunpo, ROK, 647-778(2008).
  22. Park SH, Design of Experiments, Minyoungsa, Seoul, 453-504 (2005).
  23. Geravand E, Shariatinia Z, Yaripour F, Sahebdelfar S, Korean J. Chem. Eng., 32(12), 2418, 2015
  24. Ilbay Z, Sahin S, Buyukkabasakal K, Korean J. Chem. Eng., 31(9), 1661, 2010
  25. Khamforoush M, Asgari T, Hatami T, Dabirian F, Korean J. Chem. Eng., 31(9), 1695, 2014
  26. Mahdizadeh F, Eskandarian M, Zabarjadi J, Ehsani A, Afshar A, Korean J. Chem. Eng., 31(1), 74, 2014
  27. Park JC, Ha DM, Kim MG, Korean J. Chem. Eng., 13(2), 115, 1996
  28. Chemical Society of Japan, Chemistry H/B, Revised 2nd ed., Maruzen Co., Ltd, Tokyo, 55-139, 1155(1975).
  29. Malvern, Sample Dispersion & Refractive Index Guide, version 3.1, Malvern Instruments Ltd., England, 2.1-2.14(1997).
  30. Box GEP, Behnken DW, Technometrics, 2(4), 455, 1960
  31. Song RK, SAS/STAT Regression, 3rd ed., Freedom Academy, Pajoo, 141-282(2004).