Issue
Korean Chemical Engineering Research,
Vol.53, No.6, 695-702, 2015
Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents
Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l-1 acetic acid and 5.0 g l-1 ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.
[References]
  1. van Heiningen A, Pulp Paper Canada, 107(6), 38, 2006
  2. Cogan TM, Appl. Bacteriol., 63, 551, 1987
  3. Oliva-Neto PD, Yokoya F, Bioresour. Technol., 63(1), 17, 1998
  4. Rodriguez-Lopez J, Romani A, Gonzalez-Munoz MJ, Garrote G, Parajo JC, Holzforschung, 66, 591, 2012
  5. Um BH, Hanley TR, Korean J. Chem. Eng., 25(5), 1094, 2008
  6. Drysdale GS, Fleet GH, Am. J. Enol. Vitic., 39(2), 143, 1988
  7. Shimazu Y, Watanabe M, J. Ferment. Technol., 59(1), 27, 1981
  8. Galanakis CM, Kordulis C, Kanellaki M, Koutinas AA, Bekatorou A, Lycourghiotis A, Bioresour. Technol., 114, 492, 2012
  9. Delfini C, Costa A, Am. J. Enol. Vitic., 44(1), 86, 1993
  10. Radler F, Yeast-metabolism of organic acids, in: Fleet GH (Eds.), Wine microbiology and biotechnology, Harwood Academic Publishers, Philadelphia, USA(1983).
  11. Klosowski G, Mikulski D, Grajewski J, Blajet-Kosicka A, Bioresour. Technol., 101(9), 3147, 2010
  12. Pawelzik P, Carus M, Hotchkiss J, Narayan R, Selke S, Wellisch M, Weiss M, Wicke B, Parel MK, Resour. Conserv. Recycl., 73, 211, 2013
  13. Um BH, Korean Chem. Eng. Res., 51(5), 561, 2013
  14. Xu ZP, Afacan A, Chuang DT, Can. J. Chem. Eng., 77(4), 676, 1999
  15. Anasthas HM, Gaikar VG, Sep. Sci. Technol., 36(12), 2623, 2001
  16. Wiencek JM, Qutubuddin S, Sep. Sci. Technol., 27, 1211, 1992
  17. Um BH, Friedman B, van Walsum GP, Holzforschung, 65, 51, 2011
  18. Ricker NL, Michaels JN, King CJ, J. Sep. Proc. Technol., 1, 36, 1979
  19. King CJ, Chem. Tech., 5, 285, 1992
  20. Senol A, J. Chem. Eng. Jpn., 32(6), 717, 1999
  21. Sabolova E, Schlosser S, Martak J, J. Chem. Eng. Data, 46, 735, 2001
  22. Helsel RW, Chem. Eng. Prog., 73(5), 55, 1977
  23. Niitsu M, Sekine T, Bull. Chem. Soc. Jpn., 51, 705, 1978
  24. Wardell JM, King CJ, J. Chem. Eng. Data, 23, 144, 1978
  25. Hano T, Matsumoto M, Ohtake T, Sasaki K, Kawano Y, J. Chem. Eng. Jpn., 23, 260, 1990
  26. Reisinger H, King CJ, Ind. Eng. Chem. Res., 34(3), 845, 1995
  27. Juang RS, Wu RT, Sep. Purif. Technol., 17(3), 225, 1999
  28. Al-Mudhaf HF, Hegazi MF, Abu-Shady AI, Sep. Purif. Technol., 27(1), 41, 2002
  29. Wisniewski M, Pierzchalska M, J. Chem. Technol. Biotechnol., 80(12), 1425, 2005
  30. Walton S, van Heiningen A, van Walsum P, Bioresour. Technol., 101(6), 1935, 2010