Issue
Korean Chemical Engineering Research,
Vol.53, No.5, 653-662, 2015
기-고체 반응모델을 이용한 Cyprus탄의 CO2 저온촉매가스화 반응거동
Kinetic of Catalytic CO2 Gasification for Cyprus Coal by Gas-Solid Reaction Model
일반적으로 가스화는 고온(1300~1400 oC), 고압(30~40 bar)에서 공정이 가동되나 이를 유지하기 위해 과도한 에너지가 사용된다. 본 연구에서는 공정 온도를 줄이기 위해 알칼리 촉매 중 K2CO3과 Na2CO3을 저등급의 사이프러스(Cyprus) 탄에 첨가하였고, 이산화탄소 분위기에서 가스화시켰을 때 나타나는 반응특성을 연구하였다. 열중량분석기를 활용하여 촉매의 함량, 촉매의 종류, 온도를 변수로서 가스화 공정조건을 결정하였다. 고체상 물리적 혼합법으로 촉매를 도입 시, 7 wt%의 Na2CO3가 첨가된 시료가 원탄보다 높은 활성을 보였다. 탄소전환율 거동을 예측하기 위해 시료별로 반응모델을 적용해본 결과, volumetric reaction model(VRM)이 탄소전환율 거동을 가장 잘 묘사하였다. 7 wt%의 Na2CO3을 첨가한 사이프러스 탄의 활성화 에너지는 63 kJ/mol로 원탄보다 낮으며, 이는 이산화탄소 분위기에서 석탄가스화의 반응성을 향상시킨다는 것을 보여주었다.
In general, the coal gasification has to be operated under high temperature (1300~1400 oC) and pressure (30~40 bar). However, to keep this conditions, it needs unnecessary and excessive energy. In this work, to reduce the temperature of process, alkali catalysts such as K2CO3 and Na2CO3 were added into Cyprus coal. We investigated the kinetic of Cyprus char-CO2 gasification. To determine the gasification conditions, the coal (with and without catalysts) gasified with fixed variables (catalyst loading, catalytic effects of Na2CO3 and K2CO3, temperatures) by using TGA. When catalysts are added by physical mixing method into Cyprus coal the reaction rate of coal added 7 wt% Na2CO3 is faster than raw coal for Cyprus char-CO2 gasification. The activation energy of coal added 7 wt% Na2CO3 was calculated as 63 kJ/mol which was lower than raw char. It indicates that Na2CO3 can improve the reactivity of char-CO2 gasification.
[References]
  1. “World Electricity Generation,” IEA Energy Statistics(2012).
  2. Wu Y, Wu S, Gao J, Energies, 2(3), 545, 2009
  3. Hippo E, Walker PL, Fuel, 54(4), 245, 1975
  4. Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH, Chem. Eng. Process., 46(7), 630, 2007
  5. Liu H, Luo CH, Toyota M, Uemiya S, Kojima T, Fuel Process. Technol., 87(9), 769, 2006
  6. Standish N, Tanjung AFA, Fuel, 67(5), 666, 1988
  7. Ahn DH, Gibbs BM, Ko KH, Kim JJ, Fuel, 80(11), 1651, 2001
  8. Kajitani S, Suzuki N, Ashizawa M, Hara S, Fuel, 85(2), 163, 2006
  9. Yoshida S, Matsunami J, Hosokawa Y, Yokota O, Tamaura Y, Kitamura M, Energy Fuels, 13(5), 961, 1999
  10. Zhang Y, Ashizawa M, Kajitani S, Miura K, Fuel, 87(4-5), 475, 2008
  11. Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209, 1998
  12. Huang Y, Yin X, Wu C, Wang C, Xie J, Zhou Z, Ma L, Li H, Biotechnol. Adv., 27(5), 568, 2009
  13. Brooks JD, Taylor G, Walker PL, “Chemistry and Physics of Carbon,” New York, 4, 243(1968).
  14. Liu TF, Fang YT, Wang Y, Fuel, 87(4-5), 460, 2008
  15. Everson RC, Neomagus HWJP, Kaitano R, Falcon R, du Cann VM, Fuel, 87(15-16), 3403, 2008
  16. de Souza-Santos M, Fuel, 68(12), 1507, 1989
  17. Duman G, Uddin MA, Yanik J, Fuel Process. Technol., 118, 75, 2014
  18. Park CY, Park JY, Lee SH, Rhu JH, Han MH, Rhee YW, Korean Chem. Eng. Res., 50(6), 1086, 2012
  19. Park JY, Lee DK, Hwang SC, Kim SK, Lee SH, Yoon SK, Yoo JH, Lee SH, Rhee YW, Clean Technol., 19(3), 306, 2013
  20. Hwang SC, Kim SK, Park JY, Lee DK, Lee SH, Rhee YW, Clean Technol., 20(1), 64, 2014
  21. Aranda A, Murillo R, Garcia T, Callen MS, Mastral AM, Chem. Eng. J., 126(2-3), 79, 2007
  22. Murillo R, Navarro MV, Lopez JM, Aylon E, Callen MS, Garcia T, Mastral AM, Ind. Eng. Chem. Res., 43(24), 7768, 2004
  23. Fermoso J, Stevanov C, Moghtaderi B, Arias B, Pevida C, Plaza M, Rubiera F, Pis J, J. Anal. Appl. Pyrolysis, 85(1), 287, 2009
  24. Wen C, J. Ind. Eng. Chem., 60(9), 34, 1968
  25. Ishida M, Wen C, AIChE J., 14(2), 311, 1968
  26. Bhatia S, Perlmutter D, AIChE J., 26(3), 379, 1980
  27. Fermoso J, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ, J. Therm. Anal. Calorim., 91(3), 779, 2008
  28. Box GE, Hunter JS, Hunter WG, “Statistics for Experimenters: Design, Innovation, and Discovery,” 2nd ed. Wiley & Sons, New Jersey, NJ(2005).
  29. Strange JF, Walker PL, Carbon, 14(6), 345, 1976
  30. Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12, 2011
  31. McKee DW, Carbon, 20(1), 59, 1982
  32. Sams DA, Talverdian T, Shadman F, Fuel, 64(9), 1208, 1985