Issue
Korean Chemical Engineering Research,
Vol.53, No.5, 565-569, 2015
CoO Thin Nanosheets Exhibit Higher Antimicrobial Activity Against Tested Gram-positive Bacteria Than Gram-negative Bacteria
Envisaging the role of Co in theranautics and biomedicine it is immensely important to evaluate its antimicrobial activity. Hence in this study CoO thin nanosheets (CoO-TNs) were synthesized using wet chemical solution method at a very low refluxing temperature (90 oC) and short time (60 min). Scanning electron microscopy of the grown structure revealed microflowers (2~3 μm) composed of thin sheets petals (60~80 nm). The thickness of each individual grown sheet varies from 10~20 nm. Antimicrobial activities of CoO-TNs against two Gram positive bacteria (Micrococcus luteus, and Staphylococcus aureus), and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were determined. A 98% and 65% growth inhibition of M. luteus and S. aureus respectively, was observed with 500 μg/ml of CoO-TNs compared to 39 and 34% growth inhibition of E. coli and P. aeruginosa, respectively with the same concentration of CoO-TNs. Hence, synthesized CoO-TNs exhibited antimicrobial activity against Gram negative bacteria and an invariably higher activity against tested Gram positive bacteria. Therefore, synthesized CoO-TNs are less prone to microbial infections.
[References]
  1. Salata OV, J. Nanobiotechnol., 2, 1, 2004
  2. Sanvicens N, Marco MP, Trends Biotechnol., 26, 425, 2008
  3. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC, Hum Mutat., 8, 3761, 2008
  4. Khan ST, Ahamed M, Musarrat J, Al-Khedhairy AA, Eur. J. Oral Sci., 123, 397, 2014
  5. Kim H, Baik KH, Kim J, Jang S, Korean Chem. Eng. Res., 51(2), 292, 2013
  6. Nguyen DT, Kim KS, Korean J. Chem. Eng., 31(8), 1289, 2014
  7. Akberzadeh A, Samiei M, Davaran S, Nanoscale Res Lett., 7, 144, 2012
  8. Wang K, Xu JJ, Chen HY, Biosens. Bioelectron., 20, 1388, 2005
  9. Kainz QM, Fernandes S, Eichenseer CM, Besostri F, Korner H, Muller R, Reiser O, Faraday Discuss., 2014
  10. Thomas JR, J. Appl. Phys., 37, 2914, 1966
  11. Dinega DP, Bawendi MG, Angew. Chem.-Int. Edit., 38, 1788, 1999
  12. Ely TO, Pan C, Amiens C, Chaudret B, Dassenoy F, Lecante P, Casanove MJ, Mosset A, Respaud M, Broto JM, J. Phys. Chem. B, 104(4), 695, 2000
  13. Devanneaux J, Maurin J, J. Catal., 69, 202, 1981
  14. Teng Y, Sakurai H, Ueda A, Kobayashi T, Int. J. Hydrog. Energy, 24(4), 355, 1999
  15. Chen JS, Zhu T, Hu QH, Gao J, Su F, Qiao SZ, Lou XW, ACS Appl. Mater. Interfaces, 2, 3628, 2010
  16. Wang DS, Ma XL, Wang YG, Wang L, Wang ZY, Zheng W, He XM, Li J, Peng Q, Li Y, Nano Res., 3, 1, 2010
  17. Zhang Y, Zhu J, Song X, Zhong X, J. Phys. Chem. C, 112, 5322, 2008
  18. Glaspell GP, Jagodzinski PW, Manivannan A, J. Phys. Chem. B, 108, 9607, 2004
  19. Cordero J, Munuera L, Folgueira MD, J. Bone Joint Surg. Br., 76, 717, 1994
  20. Costerton JW, Montanaro L, Arciola CR, Int. J. Artif. organs, 28, 1062, 2005
  21. Nazeruddin GM, Shaikh YI, RJPBCS, 5, 225, 2014
  22. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Int. J. Nanomed., 7, 6003, 2012
  23. Khan M, Khan ST, Khan M, Adil SF, Musarrat J, Al-Khedhairy AA, Al-Warthan A, Siddiqui MR, Alkhathlan HZ, Int. J. Nanomed., 28, 3551, 2014
  24. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G, Nanomed., 7, 184, 2011
  25. Hassen A, Saidi N, Cherif M, Boudabous A, Bioresour. Technol., 65(1-2), 73, 1998
  26. Nikaido H, Microbiol. Mol. Biol. Rev., 67, 593, 2003