Issue
Korean Chemical Engineering Research,
Vol.53, No.5, 545-552, 2015
수학적 모델링 방법에 기초한 복합발전 공정의 정상상태 모사시스템 개발
Process Modeling System of a Combined Cycle Plant for Steady State Simulation with Model Based Approach
복합발전 공정의 모델링 및 모사는 공정의 운전 및 설계 조건에 따른 공정변수의 변화를 정량적으로 예측하기 위한 중요한 접근방법이다. 본 연구에서는 현재 사용되는 복합발전공정의 정상상태 모사기의 단점을 보완하여, 사용자의 편의성과 개발자의 핵심기술 모델링을 가능하게 하는 공정 모델링 시스템을 개발하였다. 복합발전 공정의 주요 장치들을 분석하여 수학적 모델을 개발하였으며 이를 종합하여 모델라이브러리로 구성하였다. 또한 모사의 목적과 입수 가능한 자료에 따라 사용되는 모델의 상세도가 다르다는 점을 고려하여 주요장치에 대해 다른 상세도의 모델을 개발하였다. 복합발전 상업공정을 개발된 모델링 시스템을 사용하여 모델링과 모사를 수행하였으며 모사의 결과를 데이터자료와 비교 검증하였다. 검증의 모사결과와 자료데이터는 1% 내의 오차를 보였으며 개발된 모델링 시스템이 실제 공정에 응용될 수 있음을 보여주었다.
Process modeling and simulation is a powerful methodology to quantitatively predict the change of process variables when operating and design conditions are changed. In this study, considering drawbacks of currently used process simulator for combined cycle plants, we developed process modeling system equipped with an ease of use and flexibility for model development. For this purpose, the analysis of combined cycle processes was carried out and consequently, mathematical models and libraries were developed. Furthermore, in view of the fact that the level of the abstraction of process models depends on the purpose of simulation as well as the available data, simple and rigorous models were also developed for some important units. In use of reference combined plant, we executed process simulation using the developed modeling system and the comparison was made between the results of simulation and the reference data. Less than 1% marginal error was identified and we concluded that the modeling system can be applied for commercial combined cycle processes.
[References]
  1. Kim CM, Kang DW, Kim TS, Trans. Korean Soc. Mech. Eng., 37(11), 1023, 2013
  2. Sharma M, Singh O, Heat Transfer-Asian Research, 43(8), 691, 2014
  3. Park YC, Lee TY, Park JH, Ryu HJ, Korean Chem. Eng. Res., 47(1), 65, 2009
  4. SEYEDAN B, DHAR PL, GAUR RR, BINDRA GS, Heat Recov. Syst. CHP, 15(7), 619, 1995
  5. GateCycle, http://www.ge-mcs.com/en/bently-nevada-software/320-performance/1831-siweb-pl655.html.
  6. Aspen Plus, http://www.aspentech.com.
  7. PRO/II, http://software.invensys.com/products/simsci/design/pro-ii/.
  8. gPROMS, http://www.psenterprise.com/gproms/.
  9. Matlab, http://www.mathworks.com/products/matlab/.
  10. Process Engineering Division, Shell Gasifier IGCC Base CasesPED-IGCC-98-002(1998).
  11. Lee H, Lee JH, Korean Chem. Eng. Res., 52(5), 592, 2014
  12. Park MH, Kim JJ, Kim YH, Kim C, Energy Eng., 9(1), 1, 2000
  13. Frank PI, David PD, Theodore LB, Adrienne SL, Principles of HEAT and MASS TRANSFER, 7rd Ed., John Wiley & Sons, INC(2013).
  14. Chase DL, Kehoe PT, GE Combined-Cycle Product Line and Performance, GE Power Systems Schenectady, NY
  15. Shi X, Che D, Int. J. Energy Res., 2007(31), 975, 2006
  16. Multiflash, http://www.kbcat.com/infochem-software/flow-assurance-software-multiflash.
  17. Smith JM, Van Ness HC, Abbott MM, Introduction to Chemical Engineering Thermodynamics, 7rd Ed., McGRaWHILL(2005).
  18. Khurmi RS, Steam Tables: with Mollier Diagrams in S.I. Unites, S.CHAND.
  19. Ryu TY, Yang SM, Jang HM, Choi JB, Myung KC, Lee DY, Choi SB, Trans. Korean Soc. Mech. Eng., 36(12), 1535, 2012