Issue
Korean Chemical Engineering Research,
Vol.53, No.3, 350-356, 2015
Synthesis of Highly Concentrated ZnO Nanorod Sol by Sol-gel Method and their Applications for Inverted Organic Solar Cells
The effects of the zinc oxide (ZnO) preparing process on the performance of inverted organic photovoltaic cells (OPVs) were explored. The morphology and size of ZnO nanoparticles were controlled, leading to more efficient charge collection from device and higher electron mobility compared with nanospheres. Nanosized ZnO particles were synthesized by using zinc acetate dihydrate and potassium hydroxide in methanol. Also, water was added into the reaction medium to control the morphology of ZnO nanocrystals from spherical particles to rods, and NH4OH was used to prevent the gelation of dispersion. Solution-processed ZnO thin films were deposited onto the ITO/glass substrate by using spin coating process and then ZnO films were used as an electron transport layer in inverted organic photovoltaic cells. The analyses were carried out by using TEM, FE-SEM, AFM, DLS, UV-Vis spectroscopy, current density-voltage characteristics and solar simulator.
[References]
  1. Tan S, Chen B, Sun X, Fan W, Kwok H, Zhang X, Chua S, J. Appl. Phys., 98, 013505, 2005
  2. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T, Prog. Mater. Sci., 50(3), 293, 2005
  3. Kim H, Jo Y, Lee K, Lee I, Tak Y, Korean Chem. Eng. Res., 50(1), 162, 2012
  4. Fortunato EMC, Barquinha PMC, Pimentel ACMBG, Goncalves AMF, Marques AJS, Pereira LMN, Martins RFP, Adv. Mater., 17(5), 590, 2005
  5. Bong H, Lee WH, Lee DY, Kim BJ, Cho JH, Cho K, Appl. Phys. Lett., 96, 192115, 2010
  6. Cetinorgu E, Goldsmith S, J. Phys. D-Appl. Phys., 40, 5220, 2007
  7. Nair S, Sasidharan A, Rani VD, Menon D, Nair S, Manzoor K, Raina S, J. Mater. Sci. Mater., 20, 235, 2009
  8. Gorla C, Emanetoglu N, Liang S, Mayo W, Lu Y, Wraback M, Shen H, J. Appl. Phys., 85, 2595, 1999
  9. Ravirajan P, Peiro AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J, J. Phys. Chem. B, 110(15), 7635, 2006
  10. Krebs FC, Thomann Y, Thomann R, Andreasen JW, Nanotechnology, 19, 424013, 2008
  11. Boucle J, Snaith HJ, Greenham NC, J. Phys. Chem. C, 114, 3664, 2010
  12. Chang PC, Fan Z, Wang D, Tseng WY, Chiou WA, Hong J, Lu JG, Chem. Mater., 16, 5133, 2004
  13. Kong XY, Ding Y, Yang R, Wang ZL, Science, 303, 1348, 2004
  14. Yang J, Lin Y, Meng Y, Korean J. Chem. Eng., 30(11), 2026, 2013
  15. Ni YH, Wei XW, Hong JM, Ye Y, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 121, 42, 2005
  16. Spanhel L, Anderson MA, J. Am. Chem. Soc., 113, 2826, 1991
  17. Wu JJ, Liu SC, Adv. Mater., 14(3), 215, 2002
  18. Marotti RE, Guerra DN, Bello C, Machado G, Dalchiele EA, Sol. Energy Mater. Sol. Cells, 82(1-2), 85, 2004
  19. Saad L, Riad M, J. Serb. Chem. Soc., 73, 2008
  20. Rodriguez JA, Jirsak T, Dvorak J, Sambasivan S, Fischer D, J. Phys. Chem. B, 104(2), 319, 2000
  21. Liu X, Wu X, Cao H, Chang R, J. Appl. Phys., 95, 3141, 2004
  22. Beek WJE, Wienk MM, Kemerink M, Yang XN, Janssen RAJ, J. Phys. Chem. B, 109(19), 9505, 2005
  23. Li CY, Wen TC, Lee TH, Guo TF, Lin YC, Hsu YJ, J. Mater. Chem., 19, 1643, 2009
  24. Sun B, Sirringhaus H, Nano Lett., 5, 2408, 2005
  25. Bacsa R, Kihn Y, Verelst M, Dexpert J, Bacsa W, Serp P, Surf. Coat. Technol., 201, 9200, 2007
  26. Livage J, Henry M, Sanchez C, Prog. Solid State Chem., 18, 259, 1988
  27. Bu IYY, Appl. Surf. Sci., 257(14), 6107, 2011
  28. Sekine N, Chou CH, Kwan WL, Yang Y, Organic Electronics, 10, 1473, 2009
  29. Yin Z, Zheng Q, Chen SC, Cai D, ACS Appl. Mater. Interf., 5, 9015, 2013
  30. Olson DC, Lee YJ, White MS, Kopidakis N, Shaheen SE, Ginley DS, Voigt JA, Hsu JW, J. Phys. Chem. C, 111, 16640, 2007
  31. Baxter JB, Schmuttenmaer CA, J. Phys. Chem. B, 110(50), 25229, 2006