Issue
Korean Chemical Engineering Research,
Vol.52, No.6, 807-813, 2014
은첨착 대나무 활성탄의 제조와 NO 가스 반응 특성
Production of Silver Impregnated Bamboo Activated Carbon and Reactivity with NO Gases
대나무를 원료로 탄화 및 활성화온도 900 ℃에서 대나무 활성탄을 만들고, 이 대나무 활성탄을 질산은 수용액에 침지시켜 은첨착 대나무활성탄을 제조하였다. 0.002~0.1 mol/L 농도의 질산은 수용액에서 농도변화와 시간 변화 조건에서 은첨착실험을 하였다. 제조된 첨착활성탄의 은첨착량, 비표면적 및 세공분포 등의 물리적 특성을 분석하였다. 또한 폐대나무활성탄의 재활용을 위하여 대나무활성탄과 NO 기체의 반응 특성 실험을 열중량분석기를 사용하여 반응온도 20~850 ℃, NO 농도 0.1~1.8 kPa 변화 조건에서 하였다. 실험 결과, 첨착시간 2시간 내에 은첨착이 완료되었고, 질산은 수용액 농도가 0.002~0.1 mol/L로 증가됨에 따라 은첨착량은 1.95 mg Ag/g 활성탄 (0.2%)~88.70 mg Ag/g 활성탄 (8.87%)로 증가되었다. 대나무 활성탄 특성 분석에서 은첨착량이 증가할수록 세공 부피와 표면적은 은첨착 0.2%일 때 최대이고 은첨착량이 증가할수록 세공체적이 감소하였다. 비등온과 등온 NO 반응에서는 전체적으로 은첨착 대나무활성탄[BA(Ag)]이 대나무활성탄[BA]에 비하여 반응이 억제되는 것을 볼 수 있다. NO 반응에서의 활성화에너지는 80.5 kJ/mol[BA], 66.4 kJ/mol[BA(Ag)]로 나타났고, NO 분압에 대한 반응차수는 0.63[BA], 0.69l[BA(Ag)]이었다.
The Ag-impregnated activated carbon was produced from bamboo activated carbon by soaking method of silver nitrate solution. The carbonization and activation of raw material was conducted at 900 ℃. Soaking conditions are the variation of silver nitrate solution concentration (0.002~0.1 mol/L) and soaking time (maximum 24 h). The specific surface area and pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of used activated carbon. Carbon-NO reactions were carried out with respect to reaction temperature (20~850 ℃) and NO gas partial pressure (0.1~1.8 kPa). As results, Ag amounts are saturated within 2h, Ag amounts increased 1.95 mg Ag/g (0.2%)~ 88.70 mg Ag/g (8.87%) with the concentration of silver nitrate solution in the range of 0.002~0.1 mol/L. The specific volume and surface area of bamboo activated carbon of impregnated with 0.2% silver were maximum, but decreased with increasing Ag amounts of activated carbon due to pore blocking. In NO reaction, the reaction rate of impregnated bamboo activated carbon was retarded as compare with that of bamboo activated carbon. Measured reaction orders of NO concentration and activation energy were 0.63[BA], 0.69l[BA(Ag)] and 80.5 kJ/mol[BA], 66.4 kJ/mol[BA(Ag)], respectively.
[References]
  1. Park SJ, Kim BJ, Kawasaki J, Korean Chem. Eng. Res., 41(5), 649, 2003
  2. Yim KS, Eom SY, Ryu SK, Edie Dan D, Korean Chem. Eng. Res., 41(4), 503, 2003
  3. Kim JG, Oh WC, Kim MK, J. Korean Ind. Eng. Chem., 9(5), 729, 1998
  4. Bak YC, Cho KJ, Choi JH, Korean Chem. Eng. Res., 43(1), 146, 2005
  5. Yaverbaum LH, “Nitrogen Oxides Control and Removalrecent Developments,” Noyes Data Corporation, N.J., pp. 45-53, 1979
  6. Sloss LL, “Nitrogen Oxides Control Technology Fact Book,” Noyes Data Corporation, N.J., pp. 38-53, 1992
  7. Feng B, Liu H, Yuan JW, Lin ZJ, Liu DC, Energy Fuels, 10(1), 203, 1996
  8. Burch TE, Tillman FR, Chen W, Lester TW, Conway RB, Sterling AM, Energy Fuels, 5, 231, 1991
  9. Park HM, Park YK, Jeon JK, Korean Chem. Eng. Res., 49(6), 739, 2011
  10. Yoon KS, Ryu SK, Korean J. Chem. Eng., 27(6), 1882, 2010
  11. Furusawa T, Tsunoda M, Tsujimura M, Adschri T, Fuel, 64, 1306, 1985
  12. Chan LK, Sarofim AF, Beer JM, Combust. Flame, 52, 37, 1983
  13. Suzuki T, Kyotani T, Tomita A, Ind. Eng. Chem. Res., 33(11), 2840, 1994
  14. Teng H, Suuberg EM, Calo JM, Energy Fuels, 6, 398, 1992
  15. DeGroot WF, Richards GN, Carbon, 29, 179, 1991
  16. Teng HS, Lin HC, Hsieh YS, Ind. Eng. Chem. Res., 36(3), 523, 1997
  17. Aarna I, Suuberg EM, Fuel, 76(6), 475, 1997
  18. Bak YC, Energy Engg. J, 8(2), 279, 1999
  19. Park SJ, Jang YS, J. Korean Ind. Eng. Chem., 13(2), 166, 2002
  20. Chu X, Schmidt LD, Ind. Eng. Chem. Res., 32, 1359, 1993
  21. Illan-Gomaz MJ, Linares-Solano A, Salinas-Martinez de Lecea C, Calo JM, Fuels, 7, 146, 1993
  22. Richthofen AV, Wendel E, Neuschutz D, Fresenius J. Anal. Chem., 346, 261, 1993
  23. Park SJ, Jang YS, Kawasaki J, Korean Chem. Eng. Res., 40(6), 664, 2002