Issue
Korean Chemical Engineering Research,
Vol.52, No.6, 727-735, 2014
글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화
Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming
본 연구에서는 바이오디젤 생산의 부산물인 글리세롤로부터 수증기 개질(Steam Reforming, SR) 반응을 통해 수소를 생산하는 공정의 모델링과 모사 및 최적화를 수행했다. 글리세롤을 이용한 수소 생산 방법은 기존의 수소 생산방법인 메탄의 수증기 개질법(Steam Methane Reforming, SMR)을 대체할 수 있는 새로운 방법으로 세계 여러 곳에서 연구가 진행 중이다. 글리세롤과 수증기의 기체 혼합물을 고온의 반응기 내에서 개질시켜 합성가스(CO, H2)를 생산하고, 합성가스에 포함된 일산화탄소를 수성 가스 전화 반응(Water-Gas Shift, WGS)을 통해 수증기와 반응시켜 수소를 생성하고, 최종적으로 Pressure Swing Adsorption (PSA) 공정을 통하여 이산화탄소와 수소를 분리하여 정제된 수소를 얻는다. 공정시뮬레이션 프로그램인 UniSim을 이용하여 시뮬레이션을 진행하였으며, 열효율 개선을 실시하여 운전 비용을 절감하고자 하였다. 기존 연구인 미국 DOE와 독일 Linde의 글리세롤 이용 수소 생산공정과 수율 비교를 진행하였고, 수소 에너지 인프라 구축에 기여하기 위한 최적의 생산방법을 제안하였다.
For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.
[References]
  1. BP, “BP Statistical Review of World Energy 2013”, 2013
  2. Tan HW, Aziz ARA, Aroua MK, Renewable and Sustainable Energy Reviews, 27, 118, 2013
  3. Kim DW, Park KA, Kim MJ, Park DW, Korean Chem. Eng. Res., 51(3), 347, 2013
  4. Chen Y, Wang Y, Xu H, Xiong G, Applied Catalysis B: Environmental, 80, 283, 2008
  5. Tamhankar S, “Green Hydrogen by Pyroreforming of Glycerol,” WHEC, 2012
  6. Ahmed S, Papadias D, “Hydrogen from Glycerol: A Feasibility Study,” DOE Hydrogen Program, 2009
  7. Adhikari S, Fernando S, Gwaltney SR, To SDF, Bricka RM, Steele PH, Haryanto A, Int. J. Hydrog. Energy, 32(14), 2875, 2007
  8. Adhikari S, Fernando SD, Haryanto A, Chem. Eng. Technol., 32(4), 541, 2009
  9. Huang ZY, Xu CH, Liu CQ, Xiao HW, Chen J, Zhang YX, Lei YC, Korean J. Chem. Eng., 30(3), 587, 2013
  10. Sundari R, Vaidya PD, Energy Fuels, 26(7), 4195, 2012
  11. Adhikari S, Fernando SD, Haryanto A, Energy Conv. Manag., 50(10), 2600, 2009
  12. Choi Y, Stenger HG, J. Power Sources, 124(2), 432, 2003
  13. Smith RJB, Loganathan M, Shantha MS, Int. J. Chemical Reactor Eng., 8, 1, 2010
  14. Yang SI, Park JY, Jang SC, Choi DY, Kim SH, Choi DK, Korean Chem. Eng. Res., 46(2), 414, 2008
  15. Chou C, Chen F, Huang Y, Yang H, Chem. Eng. Trans., 32, 1855, 2013