Issue
Korean Chemical Engineering Research,
Vol.52, No.4, 522-529, 2014
순환유동층에서 하부 루프실 형태 변화에 따른 고체순환 특성 비교
Comparison of Solid Circulation Characteristics with Change of Lower Loop Seal Geometry in a Circulating Fluidized Bed
연소전 CO2 포집용 SEWGS 시스템의 SEWGS 반응기와 재생반응기 사이의 고체순환을 위해 SEWGS 반응기 - 하부루프실 - 재생반응기 - 상승관 - 사이클론 - 상부 루프실로 구성된 순환유동층 시스템을 사용하고 있다. 현재 시스템의 경우 수직형 하부 루프실을 사용하고 있으나 하부 루프실의 유동화 및 안정적인 고체순환을 위해 유량이 많이 필요하고 가끔씩 슬러그가 발생하였다. 본 연구에서는 새로운 하부 루프실 형태로 경사형 하부 루프실을 제안하였으며, 상온, 상압 조건에서 CO2 흡수제(P-78)를 층물질로 사용하여 기포유동층-기포유동층-고속유동층 형태의 순환유동층 실험장치를 이용하여 하부 루프실의 형태 변화에 따른 고체순환특성을 측정 및 비교하였다. 경사형 하부루프실의 경우가 수직형인 경우보다 적은 유량으로 안정적인 고체순환을 유지할 수 있었으며 두 반응기 사이의 고체층 높이 차이도 발생하지 않는 것으로 나타나 경사형 하부 루프실을 사용하는 것이 유리한 것으로 결론지을 수 있었다.
Circulating fluidized bed system consists of SEWGS reactor - lower loop seal - regeneration reactor - riser - cyclone - upper loop seal has been used for solid circulation between the SEWGS reactor and the regeneration reactor in a SEWGS system for pre-combustion CO2 capture. A vertical type lower loop seal has been used in current system but this lower loop seal requires high gas flow rate through the lower loop seal for fluidization and smooth solid circulation, and consequently, causes slugging behavior sometimes. To overcome these disadvantages, inclined type lower loop seal was proposed by this study. Solid circulation characteristics with change of lower loop seal geometry were measured and compared in a bubbling - bubbling - riser type circulating fluidized bed using CO2 absorbent (P-78) as bed material at ambient temperature and pressure. We could conclude that the inclined lower loop seal is better than the vertical type lower loop seal from the viewpoints of minimum flow rate requirement for stable solid circulation and solid height change during solid circulation.
[References]
  1. James R, “Clean Coal technology Status: CO2 Capture and Storage,” Technology Briefing for Colorado Rural Electric Association, EPRI, 2007
  2. Ryu HJ, Trans. of the Korean Hydrogen and New Energy Society, 20, 168, 2009
  3. Ryu HJ, Hyun JS, Kim H, Hwang TS, Trans. of the Korean Hydrogen and New Energy Society, 22, 465, 2011
  4. Lee KB, Beaver MG, Caram HS, Sircar S, J. Power Sources, 176(1), 312, 2008
  5. Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ, Langmuir, 26(24), 18788, 2010
  6. Lee JB, Eom TH, Choi DH, Park KW, Ryu J, Baek JI, Ryu CK, Ryu HJ, “Study on Hybrid Materials of WGS Cataylst and CO2 Sorbent for SEWGS Process,” International Symposium on Low Carbon & Renewable Energy Technology, Lotte Hotel, Jeju, Korea, 372, 2010
  7. Ryu HJ, Kim HS, Lee SY, Lee DH, Kim JC, Korean Chem. Eng. Res., 50(6), 994, 2012
  8. Ryu HJ, Lee DH, Lee SY, Hwang TS, Trans. of the Korean Hydrogen and New Energy Society, 23(4), 337, 2012
  9. Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178, 2008
  10. Basu P, Butler J, Appl. Energy, 86(9), 1723, 2009
  11. Basu P, Cheng L, Chem. Eng. Res. Des., 78(7), 991, 2000
  12. Cheng LM, Basu P, Powder Technol., 103(3), 203, 1999
  13. Kim SW, Kim SD, Powder Technol., 124(1-2), 76, 2002
  14. Namkung W, Cho M, Korean J. Chem. Eng., 19(6), 1066, 2002
  15. Kim SW, Namkung W, Kim SD, Chem. Eng. Technol., 24(8), 843, 2001
  16. Ryu HJ, Lee DH, Moon JH, Park YC, Jo SH, Trans. of the Korean Hydrogen and New Energy Society, 24(5), 428, 2013
  17. Ryu HJ, Yoon JY, Lee DH, Shun DW, Park JY, Park YS, Clean Technology, 19, 437, 2014