Issue
Korean Chemical Engineering Research,
Vol.52, No.4, 492-496, 2014
재생가능한 바이오매스 자원인 억새로부터 화학중간체 푸르프랄의 생산
Production of Chemical Intermediate Furfural from Renewable Biomass Miscanthus Straw
본 연구는 재생가능한 목질계 바이오매스 자원인 억새를 이용한 푸르프랄의 생산가능성을 평가하였다. 또한, 억새줄기로부터 푸르프랄의 생산을 위한 반응조건을 찾기 위하여 고/액 비, 반응온도, 촉매량, 그리고 반응시간의 영향을 조사하였다. 최종적으로 억새로부터 1:10의 고/액 비, 반응온도 150 ℃, 3% 황산, 그리고 반응시간 60분의 반응조건에 서 5.1 g/L의 푸르프랄을 생산하였다. 이러한 결과는 재생가능한 자원으로부터 석유를 대체할 수 있는 귀중한 화학물질로 전환할 수 있는 기초 정보를 제공하는 것이다.
In this work, the possibility of Miscanthus as renewable lignocellulosic biomass was evaluated for production of furfural. Also, to find the reaction conditions of furfural production from Miscanthus straw, the effects of solidto-liquid ratio, reaction temperature, catalyst amount, and reaction time were investigated. Finally, 5.1 g/L furfural was produced from Miscanthus straw in the condition of solid-to-liquid ratio at 1:10, reaction temperature at 150 ℃, sulfuric acid at 3%, and reaction time of 60 minutes. This result will provide basic knowledge for converting renewable resources into valuable chemicals substituted for fossil fuels.
[References]
  1. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, “The Biofine Process - Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks,” pp. 139-164. In: B. Kamm, P. R. Gruber, M. Kamm (eds.). Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006
  2. Faaij A, Biomass Bioenerg., 32(8), 657, 2008
  3. Demibras A, Prog. Energy Combust. Sci., 33, 1, 2007
  4. Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41, 2010
  5. Jeong GT, Park DH, Korean Society for Biotechnology and Bioengineering Journal, 26, 341, 2011
  6. Cha JY, Hanna MA, Industrial Crops and Products, 16, 109, 2002
  7. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Top value added chemicals from biomass, volume I - Results of screening for potential candidates from sugars and synthesis gas. http://www.osti.gov/bridge, 2004
  8. Lee SJ, Go S, Jeong GT, Kim SK, Biotechnology and Bioprocess Engineering, 16, 561, 2011
  9. Han JG, Oh SH, Choi WY, Woong KJ, Seo HB, Jeong KH, Kang DH, Lee HY, KSBB Journal, 25(4), 357, 2010
  10. Moon YH, Koo BC, Choi YH, Ahn SH, Bark ST, Cha YL, An GH, Kim JK, Suh SJ, Korean Journal of Weed Science, 30(4), 330, 2010
  11. Seo SG, Lee JE, Jeon SB, Lee BH, Koo BC, Suh SJ, Kim SH, Korean Journal of Plant Biotechnology, 36(4), 320, 2009
  12. Kang KY, Park DH, Jeong GT, Carbohydr. Polym., 92, 1321, 2013
  13. Kim JS, Korean Chem. Eng. Res., 51(4), 438, 2013
  14. Kim TH, Jeon YJ, Oh KK, Kim TH, Korean J. Chem. Eng., 30(6), 1339, 2013
  15. Yemis O, Mazza G, Bioresour. Technol., 109, 215, 2012
  16. Vazquez M, Oliva M, Tellez-Luis SJ, Ramirez JA, Bioresour. Technol., 98(16), 3053, 2007
  17. Mansilla HD, Baeza J, Urzua S, Maturana G, Villasenor J, Duran N, Bioresour. Technol., 66(3), 189, 1998