Issue
Korean Chemical Engineering Research,
Vol.52, No.3, 321-327, 2014
광개시제 첨가에 따른 고분자 분산형 액정 렌즈의 전기-광학 특성 변화
Change of Electro-optical Properties of Polymer Dispersed Liquid Crystal Lens with Addition of Extra Photo-initiator
고분자 분산형 액정 렌즈는 40 wt%의 NOA65 prepolymer와 60 wt%의 E7 액정 균일 혼합물에 추가적으로 광개시제를 첨가하여 11 μm와 30 μm의 두께로 제작 되었다. 광개시제로 사용된 벤조페논은 상업적으로 판매되는 NOA65에 기본적으로 5.0 wt%의 함량으로 포함되어있다. 이 논문에서는 NOA65에 포함되어 있는 벤조페논의 농도가 스마트 전자 안경을 위한 고분자 분산형 액정 렌즈에 미치는 영향에 대해서 알아보았다. 광개시제는 NOA65와 E7 액정 혼합물 무게의 1, 2, 4, 8, 16 wt%씩 추가로 첨가되었다. 벤조페논이 첨가된 샘플이 가지는 구동 전압, 직선 구간의 기울기, 응답 시간, 명암비와 같은 전기-광학적 특성들은 벤조페논의 첨가 없이 NOA65 만을 사용해 만든 샘플에 비해 모두 개선되었다. 이러한 개선들은 벤조페논의 첨가로 인해 샘플 내부에 존재하는 액정 방울의 평균 직경 크기가 증가하는 것에 기인하였다. 액정 방울의 평균 직경 크기는 벤조페논을 0 wt%에서 8 wt%로 첨가함에 따라 5.3 μm에서 12.2 μm로 증가하였다. 광개시제의 농도 범위에 대해 구동 전압은 11.1 V에서 17.3 V의 범위를 보였고, 직선 구간에서의 기울기는 10.35 %T/V에서 13.96 %T/V의 범위를 보였다. 이 두 특성은 벤조페논의 첨가 없이 기본 NOA65로 만들어진 샘플에 비해 더욱 개선되었다. 벤조페논을 첨가하지 않고 샘플의 셀 간격을 30 μm에서 11 μm로 감소시킴에 따라 상승 응답 시간은 0.47 ms에서 1.05 ms로, 하강 응답 시간은 18.64 ms에서 45.3 ms로 각각 증가하였고 명암비는 86.5에서 5.7로 크게 감소하였다. 두 특성 모두 셀 간격의 영향으로 저하되는 것을 확인하였으나 벤조페논의 첨가에 따라 상승 응답 시간은 0.77 ms, 하강 응답 시간은 41.04 ms로 각각 감소하였고 명암비는 16.7로 증가하여 다소 개선되는 것 또한 확인되었다.
Polymer dispersed liquid crystal lenses of the cell gap of 11 μm and 30 μm were made from a uniformly dispersed mixture of 40 wt% NOA65 prepolymer - 60 wt% E7 liquid crystal with the variations of the additional photoinitiator. The photoinitiator, benzophenone of 5.0 wt% was originally in the commercial prepolymer NOA65. In this works, the influence of the benzophenone amount intentionally added in the commercial NOA65 on the electrical properties of polymer dispersed liquid crystal lens for smart electronic glasses. The additional quantities of the photoinitiator were 1, 2, 4, 8 and 16 wt% of the weight of NOA65 - E7 mixture. All the electro-optical properties of the sample with added benzophenone such as the driving voltage, the slope of the linear region, the response time and contrast ratio were more improved than that of commercial NOA65 only. These improvements were due to the increase of the average size of E7 liquid crystal droplets in the samples with the increase of the added benzophenon amount. The liquid crystal droplet size was increased from 5.3 μm to 12.2 μm when the photoinitiator was added from 0 wt% to 8 wt%. At the same concentration range of the photoinitiator, the driving voltage was ranged from 11.1 V to 17.3 V. The slopes of the linear region were in the range of 10.35~13.96 %T/V, which were more enhanced than that of NOA65 without the additional benzophenone. In particular, though the deteriorations by cell gap of 11 μm were so effective to offset the influence of the added benzophenone for both rising and falling response time, it is confirmed that there were still somewhat improvement by the additional benzophenone. Response time and contrast ratios of all the samples with excess benzophenone were slightly enhanced.
[References]
  1. Kim J, Han JI, “Effects of Liquid Crystal Concentration on Electro-optical Properties of Polymer Disperse Liquid Crystal Lens for Smart Electronic Glasses with Auto-Shading and Auto-Focusing Function,” Electron. Mater. Lett., (In Press).
  2. Kim J, Han JI, “Effect of UV Intensity on the Electro-Optical Properties of Polymer Dispersed Liquid Crystal Lens for Smart Electronic Glasses,” Electron. Mater. Lett., (In Press).
  3. Kim J, Han JI, “Effect of Cell Gap on Electro-optical Properties of Polymer Disperse Liquid Crystal Lens for Smart Electronic Glasses,” Electron. Mater. Lett., (In Press).
  4. Han JI, Sensors, 13, 16583, 2013
  5. Han JI, “Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lens,” Proc. Int. Conf. on Consumer Electronics 2013, IEEE Consumer Electronics Society, Las Vegas, USA, 2013
  6. Park YJ, Kim J, Kim DW, Han JI, “Consideration on Fabrication of Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lens,” Proc. Conf. on Korean Liquid Crystal Conf., Korea Information Display Society, Seoul, 2013
  7. Park YJ, Park JK, Kim J, Kim DW, Han JI, “Study on Electro-Optical and Mechanical Properties of Flexible Liquid Crystal Lens,” Proc. Conf. on Korean Liquid Crystal Conf., Korea Information Display Society, Seoul, 2013
  8. Ren H, Fan YH, Wu ST, J. Phys. D: Appl. Phys., 37, 400, 2004
  9. Presnyakov VV, Galstian TV, J. of Appl. Phys., 97, 103101, 2005
  10. Malik P, Raina KK, Gathania AK, Thin Solid Films, 519(3), 1047, 2010
  11. No YS, Kim JH, Jeon CW, Park SH, Korean J. Chem. Eng., 25(1), 181, 2008
  12. Rahimpour A, Korean J. Chem. Eng., 28(1), 261, 2011