Issue
Korean Chemical Engineering Research,
Vol.52, No.3, 279-288, 2014
파이로프로세싱을 위한 전해환원 공정기술 개발
Electrochemical Reduction Process for Pyroprocessing
원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱과 소듐냉각고속로를 연계한 사용후핵연료의 재활용이다. 용융염 전해공정을 이용하는 파이로프로세싱은 사용후핵 연료에 존재하는 장 반감기 고독성 원소와 고방열 핵종을 분리하여 고준위 폐기물을 줄이면서도 고속로의 원료물질을 공급하고, 소듐냉각고속로에서는 이를 이용하여 전력을 생산한 후 다시 그 사용후핵연료를 파이로프로세싱에서 원료물질로 가공하는 개념이다. 파이로프로세싱의 전단부에 해당하는 전해환원 공정은 산화물 형태의 사용후핵연료를 금속으로 전환시켜 후속 공정인 전해정련공정에 금속을 공급하는 역할을 한다. 파이로프로세싱을 위한 전해환원 공정의 상용화를 위해서는 고용량, 고효율의 시스템 개발이 요구되므로 양극과 음극에서 공정 속도의 영향을 미치는 인자를 연구하였다.
Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-Li2O electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.
[References]
  1. IAEA, International Status and Prospects of Nuclear Power, 2008
  2. IAEA, Spent Fuel Reprocessing Options, IAEA-TECDOC-1587, 2008
  3. Willit JL, Miller WE, Battles JE, J. Nucl. Mater., 195, 229, 1992
  4. Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL, Prog. Nucl. Energy., 31, 131, 1997
  5. Benedict RW, McFarlane HF, Radwaste Magazine., 5, 23, 1998
  6. Karell EJ, Gourishankar KV, Nucl. Tech., 136, 342, 2001
  7. Serp J, Konings RJM, Malmbeck R, Rebizant J, Scheppler C, Glatz JP, J. Electroanal. Chem., 561(1-2), 143, 2004
  8. Goff KM, Benedict RW, Howden KL, Teske GM, Johnson TA, “Pyrochemical Treatment of Spent Nuclear Fuel,” Proc. of Global 2005, Tsukuba, Japan, October 9-13, 2005
  9. Inoue T, Koch L, Nucl. Eng. Technol., 40, 183, 2008
  10. Simpson MF, Herrmann SD, Nucl. Technol., 162, 179, 2008
  11. Yoo JH, Seo CS, Kim EH, Lee H, Nucl. Eng. Technol., 40, 581, 2008
  12. Kitawaki S, Shinozaki T, Fukushima M, Usami T, Yahagi N, Kurata M, Nucl. Technol., 162, 118, 2008
  13. Koyama T, Sakamura Y, Ogata T, Kobayashi H, “Pyroprocess and Metal Fuel Development for Closing Actinide Fuel Cycle with Reduced Waste Burden,” Proc. Of Global 2009, Paris, France, September 6-11, 2009
  14. Murakami T, Uozumi K, Sakamura Y, Iizuka M, Ohta H, Ogata T, Koyama T, “Recent Achievements and Remaining Challenges on Pyrochemical Reprocessing in CRIEPI,” Proc. Of the First ACSEPT International Workshop Lisbon, Portugal, March 31-April 2, 2010
  15. Song KC, Lee H, Hur JM, Kim JG, Ahn DH, Cho YZ, Nucl. Eng. Technol., 42, 131, 2010
  16. Inoue T, Koyama T, Arai Y, Energy Procedia., 7, 405, 2011
  17. Nagarajan K, Prabhakara Reddy B, Ghosh S, Ravisankar G, Mohandas KS, Kamachi Mudali U, Kutty KVG, Kasi Viswanathan KV, Anand Babu C, Kalyanasundaram P, Vasudeva Rao PR, Raj B, Energy Procedia., 7, 405, 2011
  18. Goff KM, Wass JC, Marsden KC, Teske GM, Nucl. Eng. Technol., 43, 335, 2011
  19. Lee H, Park GI, Kang KH, Hur JM, Kim JG, Ahn DH, Cho YZ, Kim EH, Nucl. Eng. Technol., 43, 317, 2011
  20. Chen GZ, Fray DJ, Farthing TW, Nature., 407, 361, 2000
  21. Yasuda K, Nohira T, Hagiwara R, Ogata YH, Electrochim. Acta, 53(1), 106, 2007
  22. Jeong SM, Jung JY, Seo CS, Park SW, J. Alloy Compd., 440, 210, 2007
  23. Wang SI, Haarberg GM, Kvalheim E, J. Iron Steel Res., 16, 48, 2008
  24. Gibilaro M, Pivato J, Cassayre L, Massot L, Chamelot P, Taxil P, Electrochim. Acta, 56(15), 5410, 2011
  25. Wang D, Qiu G, Jin X, Hu X, Chen GZ, Angew. Chem. Int. Ed., 45, 2384, 2006
  26. Yan XY, Fray DJ, Metall. Mater. Trans. B., 33, 685, 2002
  27. Xu Q, Deng LQ, Wu Y, Ma T, J. Alloy Compd., 396, 288, 2005
  28. Jeong SM, Yoo HY, Hur JM, Seo CS, J. Alloy Compd., 452, 27, 2008
  29. Chen GZ, Gordo E, Fray DJ, Metall. Mater. Trans. B., 35, 223, 2004
  30. Gordo E, Chen GZ, Fray DJ, Electrochim. Acta, 49(13), 2195, 2004
  31. Claux B, Serp J, Fouletier J, Electrochim. Acta, 56(7), 2771, 2011
  32. Abdelkader AM, Kilby KT, Cox A, Fray DJ, Chem. Rev., 113(5), 2863, 2013
  33. Wang D, Jina X, Chen GZ, Annu. Rep. Prog. Chem. Sect. C, 104, 189, 2008
  34. Hur JM, Seo CS, Hong SS, Kang DS, Park SW, React. Kinet. Catal. Lett., 80(2), 217, 2003
  35. Jeong SM, Park SB, Hong SS, Seo CS, Park SW, J. Radioanal. Nucl. Chem., 268, 349, 2006
  36. Park SB, Park BH, Jeong SM, Hur JM, Seo CS, Choi SH, Park SW, J. Radioanal. Nucl. Chem., 268, 489, 2006
  37. Hur JM, Kim TJ, Choi IK, Do JB, Hong SS, Seo CS, Nucl. Technol., 162, 192, 2008
  38. Sakamura Y, Kurata M, Inoue T, J. Electrochem. Soc., 153, 31, 2006
  39. Sakamura Y, Omori T, Inoue T, Nucl. Technol., 162, 169, 2008
  40. Herrmann SD, Li SX, Simpson MF, Phongikaroon S, Sep. Sci. Technol., 41(10), 1965, 2006
  41. Herrmann SD, Li SX, Simpson MF, J. Nucl. Sci. Technol., 44, 361, 2007
  42. Herrmann SD, Li SX, Nucl. Tech., 171, 247, 2010
  43. Choi EY, Lee JW, Park JJ, Hur JM, Kim JK, Jung KY, Jeong SM, Chem. Eng. J., 207, 514, 2012
  44. Choi EY, Kim JK, Im HS, Choi IK, Na SH, Lee JW, Jeong SM, Hur JM, J. Nucl. Mater., 437, 178, 2013
  45. Choi EY, Won CY, Cha JS, Park W, Im HS, Hong SS, Hur JM, J. Nucl. Mater., 444, 261, 2014
  46. Choi EY, Hur JM, Choi IK, Kwon SG, Kang DS, Hong SS, Shin HS, Yoo MA, Jeong SM, J. Nucl. Mater., 418, 87, 2011