Issue
Korean Chemical Engineering Research,
Vol.52, No.1, 126-132, 2014
전기동력학 기술을 이용한 시설재배지 토양 염류제거 실증 연구
A Field Study on Electrokinetic Removal of Salts from Greenhouse Soil
본 연구에서는 높은 농도의 염류가 집적된 시설재배지 토양의 제염을 위해 전기동력학적(EK) 기술을 적용한 파일럿 규모(2×3×0.2 m3, W×L×D)의 실증시험을 실시하였다. 실험 전 토양의 전기전도도(EC)는 약 9 dS/m였으며, 토양내 주요 염류는 Ca2+, Cl-, SO42- 이온이었다. 2주간의 EK 처리 후 토양의 EC는 실험 전에 비해서 52% 감소하였으며, 이 중 대부분은 초기 1주일 이내에 제거되었다(47%). 이는 주로 Na+와 Cl.의 제거에 의한 것으로 보이며, 주요 염류이자 토양에 대해 높은 흡착능을 가지는 Ca2+와 SO42- 이온은 상대적으로 제거율이 낮았다. EK 실험이 진행되는 동안 토양의 온도는 전류의 세기에 따라 증가하여 최대 50 ℃까지 증가하였다. 따라서 작물이 재배 중인 토양의 원위치 EK 적용을 위해서는 토양의 온도 상승을 제한하기 위해 전류를 조절할 필요가 있다. 결론적으로 EK 기술을 이용하여 경작 중이거나 휴경 중인 시설재배지 토양의 원위치 염류 제거가 가능할 것으로 판단되며 효율적인 탈염을 위해서는 적절한 운전 전략이 요구된다.
A pilot-scale electrokinetic (EK) separation field test (2×3×0.2 m3, W×L×D) was performed in a greenhouse to remove salts from saline soil. Initially, the greenhouse soil had high electrical conductivity (EC), about 9 dS/m, and contained mainly Ca2+, Cl- and SO42- ions. After 2 weeks of EK treatment, the soil EC was reduced to 52% compared with its initial value. The EC reduction was mostly achieved within the first week (47%) due to removal of Na+ and Cl- ions, but ions with a high adsorption capacity such as Ca2+ and SO42- ions were difficult to be removed. During the EK test, the soil temperature increased and it reached around 50 ℃ at some regions. For in situ application to soils in cultivation, the current should be controlled to limit increases in temperature, especially near the cathodes. In conclusion, the in situ EK technique is feasible for the restoration of saline greenhouse soils in or no cultivation and an appropriate strategy is necessary for more effective remediation.
[References]
  1. Lee SB, Lee CH, Hong CO, Kim SY, Lee YB, Kim PJ, Korean J. Environ. Agric., 28, 397, 2009
  2. Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T, Soil Biol. Biochem., 39, 2661, 2007
  3. Acar YB, Alshawabkeh AN, Environ. Sci. Technol., 27, 2638, 1993
  4. Probstein RF, Hicks RE, Science, 260, 498, 1993
  5. Shi S, Cho SH, Lee YH, Yun SH, Woo JJ, Moon SH, Korean J. Chem. Eng., 28(2), 575, 2011
  6. Cho JM, Kim KJ, Chung KY, Hyun S, Baek K, Sep. Sci. Technol., 44(10), 2371, 2009
  7. Cho JM, Park SY, Baek K, J. Appl. Electrochem., 40(6), 1085, 2010
  8. Choi JH, Maruthamuthu S, Lee HG, Ha TH, Bae JH, J. Hazard. Mater., 168(2-3), 1208, 2009
  9. Jayasekera S, Hall S, Geotech. Geol., 25, 1, 2007
  10. Lee YJ, Choi JH, Lee HG, Ha TH, Bae JH, Sep. Purif. Technol., 79(2), 254, 2011
  11. Xu H, Chen W, Wang C, Chen B, Yang J, J. Food Agric. Environ.,, 10, 709, 2012
  12. Choi JH, Lee YJ, Lee HG, Ha TH, Bae JH, Electrochim. Acta,, 56, 63, 2012
  13. Lee YJ, Choi JH, Lee HG, Ha TH, Environ. Eng. Sci., 30, 133, 2013
  14. Cardon GE, Davis JG, Bauder TA, Waskom RM., “Managing Saline Soils,” Colorado State University Extension (2011). Available at: http://www.ext.colostate.edu/pubs/crops/ 00503.html.
  15. Luo Q, Zhang X, Wang H, Qian Y, Chemosphere, 59, 1289, 2005