Issue
Korean Chemical Engineering Research,
Vol.52, No.1, 119-125, 2014
토양세척 공정의 환경영향 분석 - 이산화탄소 배출량 및 에너지 사용량을 중심으로
Environmental Impact of Soil Washing Process Based on the CO2 Emissions and Energy Consumption
총 석유계탄화수소로 오염된 토양을 정화하기 위한 토양세척공정을 부지 내 및 부지 밖 처리로 구분하여 공정 중 발생하는 환경적인 영향을 녹색 및 지속 가능한 정화 평가모델을 사용하여 평가하였다. 각 단계 별 환경부하의 상대적인 기여도를 평가하기 위해 전체 토양세척공정을 부지조성(1단계), 굴착(2단계), 물리적 선별 및 세척(3단계), 폐수처리 (4단계)의 주요한 4단계로 구분하였다. 부지 내 처리 시에는 1단계에서 CO2 배출량과 에너지사용량의 상대적인 기여도가 각각 87.1%와 80.4%였고, 부지 밖 처리시에는 2단계에서 CO2 배출량과 에너지사용량의 상대적인 기여도가 각각 82.7%와 80.5%였다. 결론적으로 토양세척공정에서 부지 내 처리의 경우 1단계에서의 세척장치 제작을 위한 철, 스테인리스스틸 등 소비성 재료의 사용이, 부지 밖 처리의 경우 2단계에서의 굴착된 오염토의 운송을 위한 연료의 소비가 환경부하에 영향을 끼치는 가장 중요한 요소이다. 본 연구의 결과는 토양세척 공정의 적용 시 녹색 및 지속 가능한 정화의 달성을 위한 유용한 정보가 될 것으로 기대된다.
This study evaluated the environmental impacts of a soil washing (SW) process, especially, we compared the on-site and off-site remediation of TPH-contaminated soil using green and sustainable remediation (GSR) tool. To assess relative contribution of each stage on environmental footprints in the entire soil washing process, we classified the process into four major stages: site foundation (stage I), excavation (stage II), separation & washing (stage III), and wastewater treatment (stage IV). In on-site SW process, the relative contribution of CO2 emissions and energy consumption were 87.1% and 80.4%, respectively in stage I, and in off-site SW process, the relative contribution of CO2 emissions and energy consumption were 82.7% and 80.5%, respectively in stage II. In conclusion, the major factor contributing environmental impact in the SW process were consumable materials including steel and stainless steel for washing equipment in on-site treatment and fuel consumption for transportation of soil in off-site treatment.
[References]
  1. Chatterjee S, Chatterjee T, Woo SH, Korean J. Chem. Eng., 28(12), 2293, 2011
  2. Ministry of Environment, “Guideline for Contaminated Soil Remediation Methods,”, 2009
  3. ScanRail Consult, “Environmental/economic evaluation and optimising of contaminated sites remediation.method to involve environmental assessment,” EU LIFE Project no. 96 ENV/DK/4090016, 2000
  4. Yang JW, Lee YJ, Korean Chem. Eng. Res., 45(4), 311, 2007
  5. Lemming G, “Environmental Assessment of Contaminated Site Remediation in a Life Cycle Perspective,” PhD thesis, Technical University of Denmark, 2010
  6. Forum USSR, Practices, and Metrics Into Remediation Projects, Rem. J., 19, 5, 2009
  7. USEPA, “Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Site,” EPA 542/423R/08/002, 2008
  8. USEPA, “Incorporating Sustainable Practices into Site Remediation,” EPA 542/F/08/002, 2008
  9. USEPA, “Superfund Green Remediation Strategy, Office of Solid Waste and Emergency Response,”, 2010
  10. Page CA, Diamond ML, Campbell M, McKenna S, Environ. Toxicol. Chem., 18, 801, 1999
  11. Volkwein S, Hurtig HW, Klopffer W, Int. J. Life Cycle Assess., 4, 263, 1999
  12. Toffoletto L, Deschenes L, Samson R, Int. J. Life Cycle Assess., 10, 406, 2005
  13. Cadotte M, Deschenes L, Samson RR, Int. J. Life Cycle Assess., 12, 239, 2007
  14. Harbottle MJ, Al-Tabbaa A, Evans CW, J. Hazard. Mater., 141(2), 430, 2007
  15. Hu XT, Zhu JX, Ding Q, J. Hazard. Mater., 191(1-3), 258, 2011
  16. Suer P, Andersson-Skold Y, Biomass Bioenerg., 35(2), 969, 2011
  17. Jeong SW, Suh SW, J. Korean Soc. Environ. Eng., 33, 267, 2011
  18. Cho JS, J. Korean Soc. Environ. Eng., 33(6), 405, 2011
  19. Kim DH, Hwang BR, Moon DH, Kim YS, Baek K, “Environmental Assessment on a Soil Washing Process of a Pb-contaminated Shooting Range Site: a Case Study,” Environ. Sci. Pollut. Res., in press (2013) http://dx.doi.org/10.1007/s11356- 013-1599-8.
  20. Ministry of Environment, “Standardization Report for Soil Remedial Industry,”, 2010
  21. Ministry of Environment, “Korea LCI DB”, 2013
  22. Ministry of Environment, “Environmental Statics Portal”, 2010
  23. International Energy Agency, “Key world energy statistics,", 2012