Issue
Korean Chemical Engineering Research,
Vol.52, No.1, 106-112, 2014
미세유체의 효율적인 액적 합류를 위한 정체현상 조절
Stagnation of Droplet for Efficient Merging in Microfluidic System
본 연구에서는 미세액적을 효과적으로 합류시키기 위하여 미세기둥 구조들에 따른 영향 및 정체 현상 조절에 관한 연구를 수행하였다. 최적의 미세액적 합류조건을 찾기 위하여 매우 정교하게 조절이 가능한 미세 밸브를 접목하였다. 수용성 미세액적은 연속상으로 0.5 wt% Span 80이 함유된 미네랄 오일을 사용하였다. 합류과정은 미세유체 칩 내부에 위치한 미세기둥의 구조와 배치를 통해 액적 주위의 압력과 액적 내부의 라플라스 압력의 차이를 조정하여 수행된다. 마지막으로 최적의 합류 구조를 지닌 미세유체시스템에서 효소 생화학반응 실험을 수행함으로써 본 장치가 생물학 및 생화학 실험을 수행하는 유용한 도구로서 사용될 수 있음을 입증하였다.
Here, we demonstrated the optimum design of pillar microstructure for efficient microdroplet merging. The microfluidic device mainly consisted of programmable microvalves and pillar microstructures. Based on the system, aqueous droplets were continuously generated at T-junction using actuating of integrated programmable microvalaves under the immiscible continuous fluid (mineral oil containing 0.5 wt% Span 80). The principle of merging process depended on the competitive correlation of hydraulic pressure of continuous phase and Laplace pressure of the droplet. We found that the design of the micropillars controls above two pressures. Finally, it was demonstrated that the microfluidic system could be able to efficient biochemical reaction. We expect that the microfluidic system is useful analytical or reaction tools in fundamental science, biotechnology, and chemical engineering.
[References]
  1. Whitesides GM, Nature, 442(7101), 368, 2006
  2. Jeong HH, Lee SH, Lee CS, Biosens. Bioelectron., 47, 278, 2013
  3. Jang SC, Jeong HH, Lee CS, Korean Chem. Eng. Res., 50(4), 743, 2012
  4. Min SK, Lee BM, Hwang JH, Ha SH, Shin HS, Korean J. Chem. Eng., 29(3), 392, 2012
  5. Huh YS, Jeon SJ, Lee EZ, Park HS, Hong WH, Korean J. Chem. Eng., 28(3), 633, 2011
  6. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA, Science, 308(5721), 537, 2005
  7. Choi CH, Weitz DA, Lee CS, Adv. Mater., 25(18), 2536, 2013
  8. Kang SM, Choi CH, Hwang S, Jung JM, Lee CS, Korean Chem. Eng. Res., 50(4), 733, 2012
  9. Churski K, Kaminski TS, Jakiela S, Kamysz W, Baranska- Rybak W, Weibel DB, Garstecki P, Lab Chip, 12(9), 1629, 2012
  10. Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP, Lab Chip, 6(2), 174, 2006
  11. Frenz L, El Harrak A, Pauly M, Begin-Colin S, Griffiths A D, Baret JC, Angew. Chem.-Int. Edit, 47(36), 6817, 2008
  12. Niu XZ, Gielen F, Edel JB, deMello AJ, Nat. Chem., 3(6), 437, 2011
  13. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng ZD, Cristobal G, Marquez M, Weitz DA, Angew. Chem.-Int. Edit., 45(16), 2556, 2006
  14. Mazutis L, Baret JC, Treacy P, Skhiri Y, Araghi AF, Ryckelynck M, Taly V, Griffiths AD, Lab Chip, 9(20), 2902, 2009
  15. Baroud CN, de Saint Vincent MR, Delville JP, Lab Chip, 7(8), 1029, 2007
  16. Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP, Lab Chip, 4(4), 292, 2004
  17. Kohler JM, Henkel T, Grodrian A, Kirner T, Roth M, Martin K, Metze J, Chem. Eng. J., 101(1-3), 201, 2004
  18. Fidalgo LM, Abell C, Huck WTS, Lab Chip, 7(8), 984, 2007
  19. Niu X, Gulati S, Edel JB, deMello AJ, Lab Chip, 8(11), 1837, 2008
  20. Guo F, Liu K, Ji XH, Ding HJ, Zhang M, Zeng QA, Liu W, Guo SS, Zhao XZ, Appl. Phys. Lett., 97, 233701, 2010
  21. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR, Science, 288(5463), 113, 2000
  22. Zeng SJ, Li BW, Su XO, Qin JH, Lin BC, Lab Chip, 9(10), 1340, 2009