Issue
Korean Chemical Engineering Research,
Vol.52, No.1, 88-91, 2014
Nannochloropsis oceanica로부터 용매추출법을 이용한 미세조류 오일 회수
Microalgal Oil Recovery by Solvent Extraction from Nannochloropsis oceanica
본 연구에서는 Nannochloropsis oceanica로부터 바이오디젤 원료유로 활용하기 위한 미세조류 오일을 추출하였다. 용매추출법을 이용하여 오일을 추출하였으며, 미세조류의 건식 및 습식 조건에서 오일 추출률(yield) 및 오일 추출 효율(efficiency)을 비교하였다. N. oceanica는 지방산 함량이 317.8 mg/g cell으로 건조중량 대비 30% 이상의 높은 오일함량을 나타내었으며, 미세조류의 건식 조건에서 습식 조건보다 높은 오일 추출률을 나타내었다. 사용된 용매에 대해서 헥산 < 헥산-메탄올 < 클로로포름-메탄올 순으로 오일 추출률이 증가하였다. 그러나 추출된 오일의 지방산 함량을 분석한 결과, 오일 추출률이 증가할수록 지방산 함량은 감소하여 엽록소와 같은 불순물을 포함하고 있는 것으로 나타났다. 따라서 오일 추출률과 지방산 함량을 고려한 오일 추출 효율은 건식 조건에서 헥산-메탄올 이용 추출에서 82.6%의 가장 높은 효율을 나타내었고, 습식 조건에서는 클로로포름-메탄올 이용 추출에서 88.0%로 가장 높은 효율을 나타내었다. 따라서 경제적으로 미세조류의 건조가 가능한 경우에는 헥산-메탄올을 사용하고, 건조 비용이 높은 경우에는 습식 조건에서 클로로포름-메탄올을 사용한 용매추출법이 바람직하다.
In this study, oil as a source of biodiesel from Nannochloropsis oceanica was extracted using organic solvent. The oil extraction yield and efficiency from dry and wet microalgae were investigated. The initial fatty acids content of the N. oceanica was 317.8 mg/g cell showing a high oil content over 30%. The yield from dry microalgae was higher than that from wet microalgae due to the inhibition of water. The yield by chloroform-methanol was the highest and the yield by hexane was the lowest. However, the total fatty acids contents with the chloroform-methanol were 678.7 and 778.2 mg/g oil under dry and wet conditions, respectively. The high oil extraction yield by chloroform-methanol reflected the fact that the extracted oil contained a high level of impurity. The hexane-methanol extraction from dry N. oceanica showed high oil extraction efficiency, 82.6%. The chloroform-methanol extraction under wet condition also showed high efficiency, 88.0%. While the hexane-methanol extraction from dry microalgae is desirable under low drying cost, the chloroform-methanol extraction from wet microalgae is desirable under high drying cost.
[References]
  1. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  2. Kim JK, Um BH, Kim TH, Korean J. Chem. Eng., 29(2), 209, 2012
  3. Li Q, Du W, Liu DH, Appl. Microbiol. Biotechnol., 80(5), 749, 2008
  4. Yoo SJ, Oh SK, Lee JM, Korean Chem. Eng. Res., 51(1), 87, 2013
  5. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Kankamer B, Bioenerg. Res., 1, 20, 2008
  6. Demirbas A, Energy Sources Part A-Recovery Util. Environ. Eff., 31(2), 163, 2009
  7. Xu H, Miao X, Wu Q, J. Biotechnol., 126, 499, 2006
  8. Halim R, Danquah MK, Webley PA, Biotechnol. Adv., 30, 709, 2012
  9. Lee YC, Huh YS, Farooq W, Chung J, Han JI, Shin H J, Jeong SH, Lee JS, Oh YK, Park JY, Bioresour. Technol., 137, 74, 2013
  10. Shin HJ, Park JH, Jung WK, Cho H, Kim SW, J. Korean Soc. Precis. Eng., 28, 154, 2011
  11. Lee YC, Huh YS, Farooq W, Han JI, Oh YK, Park JY, RSC Adv., 3, 12802, 2013
  12. Biller P, Friedman C, Ross AB, Bioresour. Technol., 136, 188, 2013
  13. Cho HS, Oh YK, Park SC, Lee JW, Park JY, Renew. Energ., 54, 156, 2013
  14. Lepage G, Roy CC, J. Lipid Res., 25, 1391, 1984
  15. AOCS Officical Method cd 3d-63, “Acid Value,” Officical Method and Recommended practices of the AOCS, Fifth Edn. AOCS. Champaign, Illinois, 2003
  16. Gustone FD, “Fatty Acid and Lipid Chemistry,” Chapman & Hall, UK, 207, 1996
  17. CEN, EN 14103, “Fat and oil derivatives - Fatty acid methyl esters (FAME) - Determination of ester and linoleic acid methyl ester contents,”, 2001
  18. Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, Yang JY, Bioresour. Technol., 132, 230, 2013
  19. Ferraz TPL, Fiuza MC, Santos MLA, Carvalho LP, Soares NM, J. Biochem. Biophys. Methods, 58, 187, 2004