Issue
Korean Chemical Engineering Research,
Vol.52, No.1, 81-87, 2014
연속식 2단 기포 유동층 공정의 운전특성
Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process
고체가 연속적으로 주입되고 배출되는 상온 상압 2단 기포 유동층(내경 0.1 m, 높이1.2 m)의 흐름특성을 조사하고, 운전유속범위를 고찰하였다. 고체는 상부 기포 유동층으로 주입되고, 넘쳐서 기계적 혹은 비기계적 밸브가 없이 단순히 농후상 고체 층으로 이루어진 고체 수송관(standpipe, 내경 0.025 m)를 통하여 하부 기포 유동층의 층으로 주입되며, 하부 유동층을 넘쳐서 고체가 배출되었다. 기체는 하부 유동층을 유동화하고 배출된 후 다시 상부 유동층을 유동화하였다. 기체로는 공기를 사용하였고, 고체로는 입도가 큰 입자(<1000 μm, 겉보기 밀도 3090 kg/m3)와 입도가 작은 입자(<100 μm, 겉보기 밀도 4400 kg/m3)를 혼합한 입자를 사용하였으며, 혼합비를 변수로 하였다. 하부 유동층 기체가 고체수송관의 고체흐름을 비우고, 우회하는 조건일 때 하부 유동층 유동화 속도를 붕괴속도로 정의하였다. 본 공정 의 운전이 가능한 최대기체유속으로 붕괴속도가 사용될 수 있었다. 붕괴속도는 작은 입자 혼합비가 증가함에 따라 증가하여, 30%에서 가장 큰 값을 나타낸 후, 감소하였다. 붕괴속도의 경향은 고체수송관 상단과 하단 사이의 압력차 경향과 유사하였다. 붕괴속도는 벌크밀도(bulk density)와 정체층 공극률의 함수로 나타내졌으며, 벌크밀도가 증가하면 증가하고, 정체층 공극률이 증가하면 감소하였다.
Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (<1000 μm in diameter and 3090 kg/m3 in apparent density) and fine (<100 μm in diameter and 4400 kg/m3 in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed.
[References]
  1. Kunii D, Levenspiel O, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, USA, 1991
  2. Yi CK, Jo SH, Seo Y, J. Chem. Eng. Jpn., 41(7), 691, 2008
  3. Choi JH, Youn PS, Kim KC, Yi CK, Jo SH, Ryu HJ, Park YC, Korean Chem. Eng. Res., 50(3), 516, 2012
  4. Brahimi D, Choi JH, Youn PS, Jeon YW, Kim SD, Ryu HJ, Energy Fuels, 26(2), 1441, 2012
  5. Choi JH, Youn PS, Brahimi D, Jeon YW, Kim SD, Ryu HJ, Korean J. Chem. Eng., 29(6), 737, 2012
  6. Knowlton TM, Grace JR, Avidan AA, Knowlton T M(Ed.), Circulating Fluidized Beds, Blackie Academic and Professional, Chaper 7, 214-260, 1997
  7. Campbell DL, Martine HZ, Tyson CW, “Method of Contacting Solids and Gases,” U.S. Patent No. 2,451,803, 1948
  8. Bachovchin DM, Mulik PR, Newby RA, Keairns D L, Ind. Eng. Chem. Process Des. Dev., 20(1), 19, 1981
  9. Zenz FA, Powder Technol., 47(2), 105, 1986
  10. O'Dea DP, Rudolph V, Chong YO, Powder Technol., 62(3), 291, 1990
  11. Takeshita T, Atumi K, Uchida S, Powder Technol., 71(1), 65, 1992
  12. Jing S, Hu QY, Wang JF, Jin Y, Chem. Eng. Process., 42(5), 337, 2003
  13. Geldart D, Powder Technol., 7(5), 285, 1973